core.c 47.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* -*- linux-c -*-
 * linux/kernel/ipipe/core.c
 *
 * Copyright (C) 2002-2012 Philippe Gerum.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139,
 * USA; either version 2 of the License, or (at your option) any later
 * version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Architecture-independent I-PIPE core support.
 */
#include <linux/version.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/kallsyms.h>
#include <linux/bitops.h>
#include <linux/tick.h>
#include <linux/interrupt.h>
#include <linux/uaccess.h>
#ifdef CONFIG_PROC_FS
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#endif	/* CONFIG_PROC_FS */
#include <linux/ipipe_trace.h>
#include <linux/ipipe.h>
#include <ipipe/setup.h>
40 41
#include <asm/syscall.h>
#include <asm/unistd.h>
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

struct ipipe_domain ipipe_root;
EXPORT_SYMBOL_GPL(ipipe_root);

struct ipipe_domain *ipipe_head_domain = &ipipe_root;
EXPORT_SYMBOL_GPL(ipipe_head_domain);

#ifdef CONFIG_SMP
static __initdata struct ipipe_percpu_domain_data bootup_context = {
	.status = IPIPE_STALL_MASK,
	.domain = &ipipe_root,
};
#else
#define bootup_context ipipe_percpu.root
#endif	/* !CONFIG_SMP */

DEFINE_PER_CPU(struct ipipe_percpu_data, ipipe_percpu) = {
	.root = {
		.status = IPIPE_STALL_MASK,
		.domain = &ipipe_root,
	},
	.curr = &bootup_context,
	.hrtimer_irq = -1,
#ifdef CONFIG_IPIPE_DEBUG_CONTEXT
	.context_check = 1,
#endif
};
EXPORT_PER_CPU_SYMBOL(ipipe_percpu);

/* Up to 2k of pending work data per CPU. */
#define WORKBUF_SIZE 2048
static DEFINE_PER_CPU_ALIGNED(unsigned char[WORKBUF_SIZE], work_buf);
static DEFINE_PER_CPU(void *, work_tail);
static unsigned int __ipipe_work_virq;

static void __ipipe_do_work(unsigned int virq, void *cookie);

#ifdef CONFIG_SMP

#define IPIPE_CRITICAL_TIMEOUT	1000000
static cpumask_t __ipipe_cpu_sync_map;
static cpumask_t __ipipe_cpu_lock_map;
static cpumask_t __ipipe_cpu_pass_map;
static unsigned long __ipipe_critical_lock;
static IPIPE_DEFINE_SPINLOCK(__ipipe_cpu_barrier);
static atomic_t __ipipe_critical_count = ATOMIC_INIT(0);
static void (*__ipipe_cpu_sync) (void);

#else /* !CONFIG_SMP */
/*
 * Create an alias to the unique root status, so that arch-dep code
 * may get fast access to this percpu variable including from
 * assembly.  A hard-coded assumption is that root.status appears at
 * offset #0 of the ipipe_percpu struct.
 */
extern unsigned long __ipipe_root_status
__attribute__((alias(__stringify(ipipe_percpu))));
EXPORT_SYMBOL(__ipipe_root_status);

#endif /* !CONFIG_SMP */

IPIPE_DEFINE_SPINLOCK(__ipipe_lock);

static unsigned long __ipipe_virtual_irq_map;

107 108 109 110 111
#ifdef CONFIG_PRINTK
unsigned int __ipipe_printk_virq;
int __ipipe_printk_bypass;
#endif /* CONFIG_PRINTK */

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#ifdef CONFIG_PROC_FS

struct proc_dir_entry *ipipe_proc_root;

static int __ipipe_version_info_show(struct seq_file *p, void *data)
{
	seq_printf(p, "%d\n", IPIPE_CORE_RELEASE);
	return 0;
}

static int __ipipe_version_info_open(struct inode *inode, struct file *file)
{
	return single_open(file, __ipipe_version_info_show, NULL);
}

static const struct file_operations __ipipe_version_proc_ops = {
	.open		= __ipipe_version_info_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static int __ipipe_common_info_show(struct seq_file *p, void *data)
{
	struct ipipe_domain *ipd = (struct ipipe_domain *)p->private;
	char handling, lockbit, virtuality;
	unsigned long ctlbits;
	unsigned int irq;

	seq_printf(p, "        +--- Handled\n");
	seq_printf(p, "        |+-- Locked\n");
	seq_printf(p, "        ||+- Virtual\n");
	seq_printf(p, " [IRQ]  |||  Handler\n");

	mutex_lock(&ipd->mutex);

	for (irq = 0; irq < IPIPE_NR_IRQS; irq++) {
		ctlbits = ipd->irqs[irq].control;
		/*
		 * There might be a hole between the last external IRQ
		 * and the first virtual one; skip it.
		 */
		if (irq >= IPIPE_NR_XIRQS && !ipipe_virtual_irq_p(irq))
			continue;

		if (ipipe_virtual_irq_p(irq)
		    && !test_bit(irq - IPIPE_VIRQ_BASE, &__ipipe_virtual_irq_map))
			/* Non-allocated virtual IRQ; skip it. */
			continue;

		if (ctlbits & IPIPE_HANDLE_MASK)
			handling = 'H';
		else
			handling = '.';

		if (ctlbits & IPIPE_LOCK_MASK)
			lockbit = 'L';
		else
			lockbit = '.';

		if (ipipe_virtual_irq_p(irq))
			virtuality = 'V';
		else
			virtuality = '.';

		if (ctlbits & IPIPE_HANDLE_MASK)
			seq_printf(p, " %4u:  %c%c%c  %pf\n",
				   irq, handling, lockbit, virtuality,
				   ipd->irqs[irq].handler);
		else
			seq_printf(p, " %4u:  %c%c%c\n",
				   irq, handling, lockbit, virtuality);
	}

	mutex_unlock(&ipd->mutex);

	return 0;
}

static int __ipipe_common_info_open(struct inode *inode, struct file *file)
{
	return single_open(file, __ipipe_common_info_show, PDE_DATA(inode));
}

static const struct file_operations __ipipe_info_proc_ops = {
	.owner		= THIS_MODULE,
	.open		= __ipipe_common_info_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

void add_domain_proc(struct ipipe_domain *ipd)
{
	proc_create_data(ipd->name, 0444, ipipe_proc_root,
			 &__ipipe_info_proc_ops, ipd);
}

void remove_domain_proc(struct ipipe_domain *ipd)
{
	remove_proc_entry(ipd->name, ipipe_proc_root);
}

void __init __ipipe_init_proc(void)
{
	ipipe_proc_root = proc_mkdir("ipipe", NULL);
	proc_create("version", 0444, ipipe_proc_root,
		    &__ipipe_version_proc_ops);
	add_domain_proc(ipipe_root_domain);
Philippe Gerum's avatar
Philippe Gerum committed
221 222

	__ipipe_init_tracer();
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

#else

static inline void add_domain_proc(struct ipipe_domain *ipd)
{
}

static inline void remove_domain_proc(struct ipipe_domain *ipd)
{
}

#endif	/* CONFIG_PROC_FS */

static void init_stage(struct ipipe_domain *ipd)
{
	memset(&ipd->irqs, 0, sizeof(ipd->irqs));
	mutex_init(&ipd->mutex);
	__ipipe_hook_critical_ipi(ipd);
}

static inline int root_context_offset(void)
{
	void root_context_not_at_start_of_ipipe_percpu(void);

	/* ipipe_percpu.root must be found at offset #0. */

	if (offsetof(struct ipipe_percpu_data, root))
		root_context_not_at_start_of_ipipe_percpu();

	return 0;
}

#ifdef CONFIG_SMP

static inline void fixup_percpu_data(void)
{
	struct ipipe_percpu_data *p;
	int cpu;

	/*
	 * ipipe_percpu.curr cannot be assigned statically to
	 * &ipipe_percpu.root, due to the dynamic nature of percpu
	 * data. So we make ipipe_percpu.curr refer to a temporary
	 * boot up context in static memory, until we can fixup all
	 * context pointers in this routine, after per-cpu areas have
	 * been eventually set up. The temporary context data is
	 * copied to per_cpu(ipipe_percpu, 0).root in the same move.
	 *
	 * Obviously, this code must run over the boot CPU, before SMP
	 * operations start.
	 */
	BUG_ON(smp_processor_id() || !irqs_disabled());

	per_cpu(ipipe_percpu, 0).root = bootup_context;

	for_each_possible_cpu(cpu) {
		p = &per_cpu(ipipe_percpu, cpu);
		p->curr = &p->root;
	}
}

#else /* !CONFIG_SMP */

static inline void fixup_percpu_data(void) { }

#endif /* CONFIG_SMP */

void __init __ipipe_init_early(void)
{
	struct ipipe_domain *ipd = &ipipe_root;
	int cpu;

	fixup_percpu_data();

	/*
	 * A lightweight registration code for the root domain. We are
	 * running on the boot CPU, hw interrupts are off, and
	 * secondary CPUs are still lost in space.
	 */
	ipd->name = "Linux";
	ipd->context_offset = root_context_offset();
	init_stage(ipd);

	/*
	 * Do the early init stuff. First we do the per-arch pipeline
	 * core setup, then we run the per-client setup code. At this
	 * point, the kernel does not provide much services yet: be
	 * careful.
	 */
	__ipipe_early_core_setup();
	__ipipe_early_client_setup();

316 317 318 319 320 321 322 323
#ifdef CONFIG_PRINTK
	__ipipe_printk_virq = ipipe_alloc_virq();
	ipd->irqs[__ipipe_printk_virq].handler = __ipipe_flush_printk;
	ipd->irqs[__ipipe_printk_virq].cookie = NULL;
	ipd->irqs[__ipipe_printk_virq].ackfn = NULL;
	ipd->irqs[__ipipe_printk_virq].control = IPIPE_HANDLE_MASK;
#endif /* CONFIG_PRINTK */

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	__ipipe_work_virq = ipipe_alloc_virq();
	ipd->irqs[__ipipe_work_virq].handler = __ipipe_do_work;
	ipd->irqs[__ipipe_work_virq].cookie = NULL;
	ipd->irqs[__ipipe_work_virq].ackfn = NULL;
	ipd->irqs[__ipipe_work_virq].control = IPIPE_HANDLE_MASK;

	for_each_possible_cpu(cpu)
		per_cpu(work_tail, cpu) = per_cpu(work_buf, cpu);
}

void __init __ipipe_init(void)
{
	/* Now we may engage the pipeline. */
	__ipipe_enable_pipeline();

	pr_info("Interrupt pipeline (release #%d)\n", IPIPE_CORE_RELEASE);
}

static inline void init_head_stage(struct ipipe_domain *ipd)
{
	struct ipipe_percpu_domain_data *p;
	int cpu;

	/* Must be set first, used in ipipe_percpu_context(). */
	ipd->context_offset = offsetof(struct ipipe_percpu_data, head);

	for_each_online_cpu(cpu) {
		p = ipipe_percpu_context(ipd, cpu);
		memset(p, 0, sizeof(*p));
		p->domain = ipd;
	}

	init_stage(ipd);
}

void ipipe_register_head(struct ipipe_domain *ipd, const char *name)
{
	BUG_ON(!ipipe_root_p || ipd == &ipipe_root);

	ipd->name = name;
	init_head_stage(ipd);
	barrier();
	ipipe_head_domain = ipd;
	add_domain_proc(ipd);

	pr_info("I-pipe: head domain %s registered.\n", name);
}
EXPORT_SYMBOL_GPL(ipipe_register_head);

void ipipe_unregister_head(struct ipipe_domain *ipd)
{
	BUG_ON(!ipipe_root_p || ipd != ipipe_head_domain);

	ipipe_head_domain = &ipipe_root;
	smp_mb();
	mutex_lock(&ipd->mutex);
	remove_domain_proc(ipd);
	mutex_unlock(&ipd->mutex);

	pr_info("I-pipe: head domain %s unregistered.\n", ipd->name);
}
EXPORT_SYMBOL_GPL(ipipe_unregister_head);

void ipipe_stall_root(void)
{
	unsigned long flags;

	ipipe_root_only();
	flags = hard_smp_local_irq_save();
	__set_bit(IPIPE_STALL_FLAG, &__ipipe_root_status);
	hard_smp_local_irq_restore(flags);
}
EXPORT_SYMBOL(ipipe_stall_root);

unsigned long ipipe_test_and_stall_root(void)
{
	unsigned long flags;
	int x;

	ipipe_root_only();
	flags = hard_smp_local_irq_save();
	x = __test_and_set_bit(IPIPE_STALL_FLAG, &__ipipe_root_status);
	hard_smp_local_irq_restore(flags);

	return x;
}
EXPORT_SYMBOL(ipipe_test_and_stall_root);

unsigned long ipipe_test_root(void)
{
	unsigned long flags;
	int x;

	flags = hard_smp_local_irq_save();
	x = test_bit(IPIPE_STALL_FLAG, &__ipipe_root_status);
	hard_smp_local_irq_restore(flags);

	return x;
}
EXPORT_SYMBOL(ipipe_test_root);

void ipipe_unstall_root(void)
{
	struct ipipe_percpu_domain_data *p;

	hard_local_irq_disable();

	/* This helps catching bad usage from assembly call sites. */
	ipipe_root_only();

	p = ipipe_this_cpu_root_context();

	__clear_bit(IPIPE_STALL_FLAG, &p->status);

	if (unlikely(__ipipe_ipending_p(p)))
		__ipipe_sync_stage();

	hard_local_irq_enable();
}
EXPORT_SYMBOL(ipipe_unstall_root);

void ipipe_restore_root(unsigned long x)
{
	ipipe_root_only();

	if (x)
		ipipe_stall_root();
	else
		ipipe_unstall_root();
}
EXPORT_SYMBOL(ipipe_restore_root);

void __ipipe_restore_root_nosync(unsigned long x)
{
	struct ipipe_percpu_domain_data *p = ipipe_this_cpu_root_context();

	if (raw_irqs_disabled_flags(x)) {
		__set_bit(IPIPE_STALL_FLAG, &p->status);
		trace_hardirqs_off();
	} else {
		trace_hardirqs_on();
		__clear_bit(IPIPE_STALL_FLAG, &p->status);
	}
}
EXPORT_SYMBOL_GPL(__ipipe_restore_root_nosync);

void ipipe_unstall_head(void)
{
	struct ipipe_percpu_domain_data *p = ipipe_this_cpu_head_context();

	hard_local_irq_disable();

	__clear_bit(IPIPE_STALL_FLAG, &p->status);

	if (unlikely(__ipipe_ipending_p(p)))
		__ipipe_sync_pipeline(ipipe_head_domain);

	hard_local_irq_enable();
}
EXPORT_SYMBOL_GPL(ipipe_unstall_head);

void __ipipe_restore_head(unsigned long x) /* hw interrupt off */
{
	struct ipipe_percpu_domain_data *p = ipipe_this_cpu_head_context();

	if (x) {
#ifdef CONFIG_DEBUG_KERNEL
		static int warned;
		if (!warned &&
		    __test_and_set_bit(IPIPE_STALL_FLAG, &p->status)) {
			/*
			 * Already stalled albeit ipipe_restore_head()
			 * should have detected it? Send a warning once.
			 */
			hard_local_irq_enable();
			warned = 1;
			pr_warning("I-pipe: ipipe_restore_head() "
				   "optimization failed.\n");
			dump_stack();
			hard_local_irq_disable();
		}
#else /* !CONFIG_DEBUG_KERNEL */
		__set_bit(IPIPE_STALL_FLAG, &p->status);
#endif /* CONFIG_DEBUG_KERNEL */
	} else {
		__clear_bit(IPIPE_STALL_FLAG, &p->status);
		if (unlikely(__ipipe_ipending_p(p)))
			__ipipe_sync_pipeline(ipipe_head_domain);
		hard_local_irq_enable();
	}
}
EXPORT_SYMBOL_GPL(__ipipe_restore_head);

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
void __ipipe_spin_lock_irq(ipipe_spinlock_t *lock)
{
	hard_local_irq_disable();
	if (ipipe_smp_p)
		arch_spin_lock(&lock->arch_lock);
	__set_bit(IPIPE_STALL_FLAG, &__ipipe_current_context->status);
}
EXPORT_SYMBOL_GPL(__ipipe_spin_lock_irq);

void __ipipe_spin_unlock_irq(ipipe_spinlock_t *lock)
{
	if (ipipe_smp_p)
		arch_spin_unlock(&lock->arch_lock);
	__clear_bit(IPIPE_STALL_FLAG, &__ipipe_current_context->status);
	hard_local_irq_enable();
}
EXPORT_SYMBOL_GPL(__ipipe_spin_unlock_irq);

unsigned long __ipipe_spin_lock_irqsave(ipipe_spinlock_t *lock)
{
	unsigned long flags;
	int s;

	flags = hard_local_irq_save();
	if (ipipe_smp_p)
		arch_spin_lock(&lock->arch_lock);
	s = __test_and_set_bit(IPIPE_STALL_FLAG, &__ipipe_current_context->status);

	return arch_mangle_irq_bits(s, flags);
}
EXPORT_SYMBOL_GPL(__ipipe_spin_lock_irqsave);

int __ipipe_spin_trylock_irqsave(ipipe_spinlock_t *lock,
				 unsigned long *x)
{
	unsigned long flags;
	int s;

	flags = hard_local_irq_save();
	if (ipipe_smp_p && !arch_spin_trylock(&lock->arch_lock)) {
		hard_local_irq_restore(flags);
		return 0;
	}
	s = __test_and_set_bit(IPIPE_STALL_FLAG, &__ipipe_current_context->status);
	*x = arch_mangle_irq_bits(s, flags);

	return 1;
}
EXPORT_SYMBOL_GPL(__ipipe_spin_trylock_irqsave);

void __ipipe_spin_unlock_irqrestore(ipipe_spinlock_t *lock,
				    unsigned long x)
{
	if (ipipe_smp_p)
		arch_spin_unlock(&lock->arch_lock);
	if (!arch_demangle_irq_bits(&x))
		__clear_bit(IPIPE_STALL_FLAG, &__ipipe_current_context->status);
	hard_local_irq_restore(x);
}
EXPORT_SYMBOL_GPL(__ipipe_spin_unlock_irqrestore);

int __ipipe_spin_trylock_irq(ipipe_spinlock_t *lock)
{
	unsigned long flags;

	flags = hard_local_irq_save();
	if (ipipe_smp_p && !arch_spin_trylock(&lock->arch_lock)) {
		hard_local_irq_restore(flags);
		return 0;
	}
	__set_bit(IPIPE_STALL_FLAG, &__ipipe_current_context->status);

	return 1;
}
EXPORT_SYMBOL_GPL(__ipipe_spin_trylock_irq);

void __ipipe_spin_unlock_irqbegin(ipipe_spinlock_t *lock)
{
	if (ipipe_smp_p)
		arch_spin_unlock(&lock->arch_lock);
}

void __ipipe_spin_unlock_irqcomplete(unsigned long x)
{
	if (!arch_demangle_irq_bits(&x))
		__clear_bit(IPIPE_STALL_FLAG, &__ipipe_current_context->status);
	hard_local_irq_restore(x);
}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
#ifdef __IPIPE_3LEVEL_IRQMAP

/* Must be called hw IRQs off. */
static inline void __ipipe_set_irq_held(struct ipipe_percpu_domain_data *p,
					unsigned int irq)
{
	__set_bit(irq, p->irqheld_map);
	p->irqall[irq]++;
}

/* Must be called hw IRQs off. */
void __ipipe_set_irq_pending(struct ipipe_domain *ipd, unsigned int irq)
{
	struct ipipe_percpu_domain_data *p = ipipe_this_cpu_context(ipd);
	int l0b, l1b;

	IPIPE_WARN_ONCE(!hard_irqs_disabled());

	l0b = irq / (BITS_PER_LONG * BITS_PER_LONG);
	l1b = irq / BITS_PER_LONG;

	if (likely(!test_bit(IPIPE_LOCK_FLAG, &ipd->irqs[irq].control))) {
		__set_bit(irq, p->irqpend_lomap);
		__set_bit(l1b, p->irqpend_mdmap);
		__set_bit(l0b, &p->irqpend_himap);
	} else
		__set_bit(irq, p->irqheld_map);

	p->irqall[irq]++;
}
EXPORT_SYMBOL_GPL(__ipipe_set_irq_pending);

/* Must be called hw IRQs off. */
void __ipipe_lock_irq(unsigned int irq)
{
	struct ipipe_domain *ipd = ipipe_root_domain;
	struct ipipe_percpu_domain_data *p;
	int l0b, l1b;

	IPIPE_WARN_ONCE(!hard_irqs_disabled());

	/*
	 * Interrupts requested by a registered head domain cannot be
	 * locked, since this would make no sense: interrupts are
	 * globally masked at CPU level when the head domain is
	 * stalled, so there is no way we could encounter the
	 * situation IRQ locks are handling.
	 */
	if (test_and_set_bit(IPIPE_LOCK_FLAG, &ipd->irqs[irq].control))
		return;

	l0b = irq / (BITS_PER_LONG * BITS_PER_LONG);
	l1b = irq / BITS_PER_LONG;

	p = ipipe_this_cpu_context(ipd);
	if (__test_and_clear_bit(irq, p->irqpend_lomap)) {
		__set_bit(irq, p->irqheld_map);
		if (p->irqpend_lomap[l1b] == 0) {
			__clear_bit(l1b, p->irqpend_mdmap);
			if (p->irqpend_mdmap[l0b] == 0)
				__clear_bit(l0b, &p->irqpend_himap);
		}
	}
}
EXPORT_SYMBOL_GPL(__ipipe_lock_irq);

/* Must be called hw IRQs off. */
void __ipipe_unlock_irq(unsigned int irq)
{
	struct ipipe_domain *ipd = ipipe_root_domain;
	struct ipipe_percpu_domain_data *p;
	int l0b, l1b, cpu;

	IPIPE_WARN_ONCE(!hard_irqs_disabled());

	if (!test_and_clear_bit(IPIPE_LOCK_FLAG, &ipd->irqs[irq].control))
		return;

	l0b = irq / (BITS_PER_LONG * BITS_PER_LONG);
	l1b = irq / BITS_PER_LONG;

	for_each_online_cpu(cpu) {
		p = ipipe_this_cpu_root_context();
		if (test_and_clear_bit(irq, p->irqheld_map)) {
			/* We need atomic ops here: */
			set_bit(irq, p->irqpend_lomap);
			set_bit(l1b, p->irqpend_mdmap);
			set_bit(l0b, &p->irqpend_himap);
		}
	}
}
EXPORT_SYMBOL_GPL(__ipipe_unlock_irq);

static inline int __ipipe_next_irq(struct ipipe_percpu_domain_data *p)
{
	int l0b, l1b, l2b;
	unsigned long l0m, l1m, l2m;
	unsigned int irq;

	l0m = p->irqpend_himap;
	if (unlikely(l0m == 0))
		return -1;

	l0b = __ipipe_ffnz(l0m);
	l1m = p->irqpend_mdmap[l0b];
	if (unlikely(l1m == 0))
		return -1;

	l1b = __ipipe_ffnz(l1m) + l0b * BITS_PER_LONG;
	l2m = p->irqpend_lomap[l1b];
	if (unlikely(l2m == 0))
		return -1;

	l2b = __ipipe_ffnz(l2m);
	irq = l1b * BITS_PER_LONG + l2b;

	__clear_bit(irq, p->irqpend_lomap);
	if (p->irqpend_lomap[l1b] == 0) {
		__clear_bit(l1b, p->irqpend_mdmap);
		if (p->irqpend_mdmap[l0b] == 0)
			__clear_bit(l0b, &p->irqpend_himap);
	}

	return irq;
}

#else /* __IPIPE_2LEVEL_IRQMAP */

/* Must be called hw IRQs off. */
static inline void __ipipe_set_irq_held(struct ipipe_percpu_domain_data *p,
					unsigned int irq)
{
	__set_bit(irq, p->irqheld_map);
	p->irqall[irq]++;
}

/* Must be called hw IRQs off. */
void __ipipe_set_irq_pending(struct ipipe_domain *ipd, unsigned int irq)
{
	struct ipipe_percpu_domain_data *p = ipipe_this_cpu_context(ipd);
	int l0b = irq / BITS_PER_LONG;

	IPIPE_WARN_ONCE(!hard_irqs_disabled());

	if (likely(!test_bit(IPIPE_LOCK_FLAG, &ipd->irqs[irq].control))) {
		__set_bit(irq, p->irqpend_lomap);
		__set_bit(l0b, &p->irqpend_himap);
	} else
		__set_bit(irq, p->irqheld_map);

	p->irqall[irq]++;
}
EXPORT_SYMBOL_GPL(__ipipe_set_irq_pending);

/* Must be called hw IRQs off. */
void __ipipe_lock_irq(unsigned int irq)
{
	struct ipipe_percpu_domain_data *p;
	int l0b = irq / BITS_PER_LONG;

	IPIPE_WARN_ONCE(!hard_irqs_disabled());

	if (test_and_set_bit(IPIPE_LOCK_FLAG,
			     &ipipe_root_domain->irqs[irq].control))
		return;

	p = ipipe_this_cpu_root_context();
	if (__test_and_clear_bit(irq, p->irqpend_lomap)) {
		__set_bit(irq, p->irqheld_map);
		if (p->irqpend_lomap[l0b] == 0)
			__clear_bit(l0b, &p->irqpend_himap);
	}
}
EXPORT_SYMBOL_GPL(__ipipe_lock_irq);

/* Must be called hw IRQs off. */
void __ipipe_unlock_irq(unsigned int irq)
{
	struct ipipe_domain *ipd = ipipe_root_domain;
	struct ipipe_percpu_domain_data *p;
	int l0b = irq / BITS_PER_LONG, cpu;

	IPIPE_WARN_ONCE(!hard_irqs_disabled());

	if (!test_and_clear_bit(IPIPE_LOCK_FLAG, &ipd->irqs[irq].control))
		return;

	for_each_online_cpu(cpu) {
		p = ipipe_percpu_context(ipd, cpu);
		if (test_and_clear_bit(irq, p->irqheld_map)) {
			/* We need atomic ops here: */
			set_bit(irq, p->irqpend_lomap);
			set_bit(l0b, &p->irqpend_himap);
		}
	}
}
EXPORT_SYMBOL_GPL(__ipipe_unlock_irq);

static inline int __ipipe_next_irq(struct ipipe_percpu_domain_data *p)
{
	unsigned long l0m, l1m;
	int l0b, l1b;

	l0m = p->irqpend_himap;
	if (unlikely(l0m == 0))
		return -1;

	l0b = __ipipe_ffnz(l0m);
	l1m = p->irqpend_lomap[l0b];
	if (unlikely(l1m == 0))
		return -1;

	l1b = __ipipe_ffnz(l1m);
	__clear_bit(l1b, &p->irqpend_lomap[l0b]);
	if (p->irqpend_lomap[l0b] == 0)
		__clear_bit(l0b, &p->irqpend_himap);

	return l0b * BITS_PER_LONG + l1b;
}

#endif /* __IPIPE_2LEVEL_IRQMAP */

void __ipipe_do_sync_pipeline(struct ipipe_domain *top)
{
	struct ipipe_percpu_domain_data *p;
	struct ipipe_domain *ipd;

	/* We must enter over the root domain. */
	IPIPE_WARN_ONCE(__ipipe_current_domain != ipipe_root_domain);
	ipd = top;
next:
	p = ipipe_this_cpu_context(ipd);
	if (test_bit(IPIPE_STALL_FLAG, &p->status))
		return;

	if (__ipipe_ipending_p(p)) {
		if (ipd == ipipe_root_domain)
			__ipipe_sync_stage();
		else {
			/* Switching to head. */
			p->coflags &= ~__IPIPE_ALL_R;
			__ipipe_set_current_context(p);
			__ipipe_sync_stage();
			__ipipe_set_current_domain(ipipe_root_domain);
		}
	}

	if (ipd != ipipe_root_domain) {
		ipd = ipipe_root_domain;
		goto next;
	}
}
EXPORT_SYMBOL_GPL(__ipipe_do_sync_pipeline);

unsigned int ipipe_alloc_virq(void)
{
	unsigned long flags, irq = 0;
	int ipos;

	raw_spin_lock_irqsave(&__ipipe_lock, flags);

	if (__ipipe_virtual_irq_map != ~0) {
		ipos = ffz(__ipipe_virtual_irq_map);
		set_bit(ipos, &__ipipe_virtual_irq_map);
		irq = ipos + IPIPE_VIRQ_BASE;
	}

	raw_spin_unlock_irqrestore(&__ipipe_lock, flags);

	return irq;
}
EXPORT_SYMBOL_GPL(ipipe_alloc_virq);

void ipipe_free_virq(unsigned int virq)
{
	clear_bit(virq - IPIPE_VIRQ_BASE, &__ipipe_virtual_irq_map);
	smp_mb__after_atomic();
}
EXPORT_SYMBOL_GPL(ipipe_free_virq);

int ipipe_request_irq(struct ipipe_domain *ipd,
		      unsigned int irq,
		      ipipe_irq_handler_t handler,
		      void *cookie,
		      ipipe_irq_ackfn_t ackfn)
{
	unsigned long flags;
	int ret = 0;

	ipipe_root_only();

	if (handler == NULL ||
	    (irq >= IPIPE_NR_XIRQS && !ipipe_virtual_irq_p(irq)))
		return -EINVAL;

	raw_spin_lock_irqsave(&__ipipe_lock, flags);

	if (ipd->irqs[irq].handler) {
		ret = -EBUSY;
		goto out;
	}

	if (ackfn == NULL)
		ackfn = ipipe_root_domain->irqs[irq].ackfn;

	ipd->irqs[irq].handler = handler;
	ipd->irqs[irq].cookie = cookie;
	ipd->irqs[irq].ackfn = ackfn;
	ipd->irqs[irq].control = IPIPE_HANDLE_MASK;
out:
	raw_spin_unlock_irqrestore(&__ipipe_lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(ipipe_request_irq);

void ipipe_free_irq(struct ipipe_domain *ipd,
		    unsigned int irq)
{
	unsigned long flags;

	ipipe_root_only();

	raw_spin_lock_irqsave(&__ipipe_lock, flags);

	if (ipd->irqs[irq].handler == NULL)
		goto out;

	ipd->irqs[irq].handler = NULL;
	ipd->irqs[irq].cookie = NULL;
	ipd->irqs[irq].ackfn = NULL;
	ipd->irqs[irq].control = 0;
out:
	raw_spin_unlock_irqrestore(&__ipipe_lock, flags);
}
EXPORT_SYMBOL_GPL(ipipe_free_irq);

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
void ipipe_set_hooks(struct ipipe_domain *ipd, int enables)
{
	struct ipipe_percpu_domain_data *p;
	unsigned long flags;
	int cpu, wait;

	if (ipd == ipipe_root_domain) {
		IPIPE_WARN(enables & __IPIPE_TRAP_E);
		enables &= ~__IPIPE_TRAP_E;
	} else {
		IPIPE_WARN(enables & __IPIPE_KEVENT_E);
		enables &= ~__IPIPE_KEVENT_E;
	}

	flags = ipipe_critical_enter(NULL);

	for_each_online_cpu(cpu) {
		p = ipipe_percpu_context(ipd, cpu);
		p->coflags &= ~__IPIPE_ALL_E;
		p->coflags |= enables;
	}

	wait = (enables ^ __IPIPE_ALL_E) << __IPIPE_SHIFT_R;
	if (wait == 0 || !__ipipe_root_p) {
		ipipe_critical_exit(flags);
		return;
	}

	ipipe_this_cpu_context(ipd)->coflags &= ~wait;

	ipipe_critical_exit(flags);

	/*
	 * In case we cleared some hooks over the root domain, we have
	 * to wait for any ongoing execution to finish, since our
	 * caller might subsequently unmap the target domain code.
	 *
	 * We synchronize with the relevant __ipipe_notify_*()
	 * helpers, disabling all hooks before we start waiting for
	 * completion on all CPUs.
	 */
	for_each_online_cpu(cpu) {
		while (ipipe_percpu_context(ipd, cpu)->coflags & wait)
			schedule_timeout_interruptible(HZ / 50);
	}
}
EXPORT_SYMBOL_GPL(ipipe_set_hooks);

int __weak ipipe_fastcall_hook(struct pt_regs *regs)
{
	return -1;	/* i.e. fall back to slow path. */
}

int __weak ipipe_syscall_hook(struct ipipe_domain *ipd, struct pt_regs *regs)
{
	return 0;
}

static inline void sync_root_irqs(void)
{
	struct ipipe_percpu_domain_data *p;
	unsigned long flags;

	flags = hard_local_irq_save();

	p = ipipe_this_cpu_root_context();
	if (unlikely(__ipipe_ipending_p(p)))
		__ipipe_sync_stage();

	hard_local_irq_restore(flags);
}

int ipipe_handle_syscall(struct thread_info *ti,
			 unsigned long nr, struct pt_regs *regs)
{
	unsigned long local_flags = READ_ONCE(ti->ipipe_flags);
	int ret;

	/*
	 * NOTE: This is a backport from the DOVETAIL syscall
	 * redirector to the older pipeline implementation.
	 *
	 * ==
	 *
	 * If the syscall # is out of bounds and the current IRQ stage
	 * is not the root one, this has to be a non-native system
	 * call handled by some co-kernel on the head stage. Hand it
	 * over to the head stage via the fast syscall handler.
	 *
	 * Otherwise, if the system call is out of bounds or the
	 * current thread is shared with a co-kernel, hand the syscall
	 * over to the latter through the pipeline stages. This
	 * allows:
	 *
	 * - the co-kernel to receive the initial - foreign - syscall
	 * a thread should send for enabling syscall handling by the
	 * co-kernel.
	 *
	 * - the co-kernel to manipulate the current execution stage
	 * for handling the request, which includes switching the
	 * current thread back to the root stage if the syscall is a
	 * native one, or promoting it to the head stage if handling
	 * the foreign syscall requires this.
	 *
	 * Native syscalls from regular (non-pipeline) threads are
	 * ignored by this routine, and flow down to the regular
	 * system call handler.
	 */

	if (nr >= NR_syscalls && (local_flags & _TIP_HEAD)) {
		ipipe_fastcall_hook(regs);
		local_flags = READ_ONCE(ti->ipipe_flags);
		if (local_flags & _TIP_HEAD) {
			if (local_flags &  _TIP_MAYDAY)
				__ipipe_call_mayday(regs);
			return 1; /* don't pass down, no tail work. */
		} else {
			sync_root_irqs();
			return -1; /* don't pass down, do tail work. */
		}
	}

	if ((local_flags & _TIP_NOTIFY) || nr >= NR_syscalls) {
		ret =__ipipe_notify_syscall(regs);
		local_flags = READ_ONCE(ti->ipipe_flags);
		if (local_flags & _TIP_HEAD)
			return 1; /* don't pass down, no tail work. */
		if (ret)
			return -1; /* don't pass down, do tail work. */
	}

	return 0; /* pass syscall down to the host. */
}

int __ipipe_notify_syscall(struct pt_regs *regs)
{
	struct ipipe_domain *caller_domain, *this_domain, *ipd;
	struct ipipe_percpu_domain_data *p;
	unsigned long flags;
	int ret = 0;

	/*
	 * We should definitely not pipeline a syscall with IRQs off.
	 */
	IPIPE_WARN_ONCE(hard_irqs_disabled());

	flags = hard_local_irq_save();
	caller_domain = this_domain = __ipipe_current_domain;
	ipd = ipipe_head_domain;
next:
	p = ipipe_this_cpu_context(ipd);
	if (likely(p->coflags & __IPIPE_SYSCALL_E)) {
		__ipipe_set_current_context(p);
		p->coflags |= __IPIPE_SYSCALL_R;
		hard_local_irq_restore(flags);
		ret = ipipe_syscall_hook(caller_domain, regs);
		flags = hard_local_irq_save();
		p->coflags &= ~__IPIPE_SYSCALL_R;
		if (__ipipe_current_domain != ipd)
			/* Account for domain migration. */
			this_domain = __ipipe_current_domain;
		else
			__ipipe_set_current_domain(this_domain);
	}

	if (this_domain == ipipe_root_domain) {
		if (ipd != ipipe_root_domain && ret == 0) {
			ipd = ipipe_root_domain;
			goto next;
		}
		/*
		 * Careful: we may have migrated from head->root, so p
		 * would be ipipe_this_cpu_context(head).
		 */
		p = ipipe_this_cpu_root_context();
		if (__ipipe_ipending_p(p))
			__ipipe_sync_stage();
	} else if (ipipe_test_thread_flag(TIP_MAYDAY))
		__ipipe_call_mayday(regs);

	hard_local_irq_restore(flags);

	return ret;
}

int __weak ipipe_trap_hook(struct ipipe_trap_data *data)
{
	return 0;
}

int __ipipe_notify_trap(int exception, struct pt_regs *regs)
{
	struct ipipe_percpu_domain_data *p;
	struct ipipe_trap_data data;
	unsigned long flags;
	int ret = 0;

	flags = hard_local_irq_save();

	/*
	 * We send a notification about all traps raised over a
	 * registered head domain only.
	 */
	if (__ipipe_root_p)
		goto out;

	p = ipipe_this_cpu_head_context();
	if (likely(p->coflags & __IPIPE_TRAP_E)) {
		p->coflags |= __IPIPE_TRAP_R;
		hard_local_irq_restore(flags);
		data.exception = exception;
		data.regs = regs;
		ret = ipipe_trap_hook(&data);
		flags = hard_local_irq_save();
		p->coflags &= ~__IPIPE_TRAP_R;
	}
out:
	hard_local_irq_restore(flags);

	return ret;
}

int __weak ipipe_kevent_hook(int kevent, void *data)
{
	return 0;
}

int __ipipe_notify_kevent(int kevent, void *data)
{
	struct ipipe_percpu_domain_data *p;
	unsigned long flags;
	int ret = 0;

	ipipe_root_only();

	flags = hard_local_irq_save();

	p = ipipe_this_cpu_root_context();
	if (likely(p->coflags & __IPIPE_KEVENT_E)) {
		p->coflags |= __IPIPE_KEVENT_R;
		hard_local_irq_restore(flags);
		ret = ipipe_kevent_hook(kevent, data);
		flags = hard_local_irq_save();
		p->coflags &= ~__IPIPE_KEVENT_R;
	}

	hard_local_irq_restore(flags);

	return ret;
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
void __weak ipipe_migration_hook(struct task_struct *p)
{
}

static void complete_domain_migration(void) /* hw IRQs off */
{
	struct ipipe_percpu_domain_data *p;
	struct ipipe_percpu_data *pd;
	struct task_struct *t;

	ipipe_root_only();
	pd = raw_cpu_ptr(&ipipe_percpu);
	t = pd->task_hijacked;
	if (t == NULL)
		return;

	pd->task_hijacked = NULL;
	t->state &= ~TASK_HARDENING;
	if (t->state != TASK_INTERRUPTIBLE)
		/* Migration aborted (by signal). */
		return;

	ipipe_set_ti_thread_flag(task_thread_info(t), TIP_HEAD);
	p = ipipe_this_cpu_head_context();
	IPIPE_WARN_ONCE(test_bit(IPIPE_STALL_FLAG, &p->status));
	/*
	 * hw IRQs are disabled, but the completion hook assumes the
	 * head domain is logically stalled: fix it up.
	 */
	__set_bit(IPIPE_STALL_FLAG, &p->status);
	ipipe_migration_hook(t);
	__clear_bit(IPIPE_STALL_FLAG, &p->status);
	if (__ipipe_ipending_p(p))
		__ipipe_sync_pipeline(p->domain);
}

void __ipipe_complete_domain_migration(void)
{
	unsigned long flags;

	flags = hard_local_irq_save();
	complete_domain_migration();
	hard_local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(__ipipe_complete_domain_migration);

int __ipipe_switch_tail(void)
{
	int x;

#ifdef CONFIG_IPIPE_WANT_PREEMPTIBLE_SWITCH
	hard_local_irq_disable();
#endif
	x = __ipipe_root_p;
	if (x)
		complete_domain_migration();

#ifndef CONFIG_IPIPE_WANT_PREEMPTIBLE_SWITCH
	if (x)
#endif
		hard_local_irq_enable();

	return !x;
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
void __ipipe_notify_vm_preemption(void)
{
	struct ipipe_vm_notifier *vmf;
	struct ipipe_percpu_data *p;

	ipipe_check_irqoff();
	p = __ipipe_raw_cpu_ptr(&ipipe_percpu);
	vmf = p->vm_notifier;
	if (unlikely(vmf))
		vmf->handler(vmf);
}
EXPORT_SYMBOL_GPL(__ipipe_notify_vm_preemption);

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
static void dispatch_irq_head(unsigned int irq) /* hw interrupts off */
{
	struct ipipe_percpu_domain_data *p = ipipe_this_cpu_head_context(), *old;
	struct ipipe_domain *head = p->domain;

	if (unlikely(test_bit(IPIPE_STALL_FLAG, &p->status))) {
		__ipipe_set_irq_pending(head, irq);
		return;
	}

	/* Switch to the head domain if not current. */
	old = __ipipe_current_context;
	if (old != p)
		__ipipe_set_current_context(p);

	p->irqall[irq]++;
	__set_bit(IPIPE_STALL_FLAG, &p->status);
	barrier();
	head->irqs[irq].handler(irq, head->irqs[irq].cookie);
	__ipipe_run_irqtail(irq);
	hard_local_irq_disable();
	p = ipipe_this_cpu_head_context();
	__clear_bit(IPIPE_STALL_FLAG, &p->status);

	/* Are we still running in the head domain? */
	if (likely(__ipipe_current_context == p)) {
		/* Did we enter this code over the head domain? */
		if (old->domain == head) {
			/* Yes, do immediate synchronization. */
			if (__ipipe_ipending_p(p))
				__ipipe_sync_stage();
			return;
		}
		__ipipe_set_current_context(ipipe_this_cpu_root_context());
	}

	/*
	 * We must be running over the root domain, synchronize
	 * the pipeline for high priority IRQs (slow path).
	 */
	__ipipe_do_sync_pipeline(head);
}

void __ipipe_dispatch_irq(unsigned int irq, int flags) /* hw interrupts off */
{
	struct ipipe_domain *ipd;
	struct irq_desc *desc;
	unsigned long control;
	int chained_irq;

	/*
	 * Survival kit when reading this code:
	 *
	 * - we have two main situations, leading to three cases for
	 *   handling interrupts:
	 *
	 *   a) the root domain is alone, no registered head domain
	 *      => all interrupts go through the interrupt log
	 *   b) a head domain is registered
	 *      => head domain IRQs go through the fast dispatcher
	 *      => root domain IRQs go through the interrupt log
	 *
	 * - when no head domain is registered, ipipe_head_domain ==
	 *   ipipe_root_domain == &ipipe_root.
	 *
	 * - the caller tells us whether we should acknowledge this
	 *   IRQ. Even virtual IRQs may require acknowledge on some
	 *   platforms (e.g. arm/SMP).
	 *
	 * - the caller tells us whether we may try to run the IRQ log
	 *   syncer. Typically, demuxed IRQs won't be synced
	 *   immediately.
	 *
	 * - multiplex IRQs most likely have a valid acknowledge
	 *   handler and we may not be called with IPIPE_IRQF_NOACK
	 *   for them. The ack handler for the multiplex IRQ actually
	 *   decodes the demuxed interrupts.
	 */

#ifdef CONFIG_IPIPE_DEBUG
	if (irq >= IPIPE_NR_IRQS) {
		pr_err("I-pipe: spurious interrupt %u\n", irq);
		return;
	}
#endif
	/*
	 * CAUTION: on some archs, virtual IRQs may have acknowledge
	 * handlers. Multiplex IRQs should have one too.
	 */
	if (unlikely(irq >= IPIPE_NR_XIRQS)) {
		desc = NULL;
		chained_irq = 0;
	} else {
		desc = irq_to_desc(irq);
		chained_irq = desc ? ipipe_chained_irq_p(desc) : 0;
	}
	if (flags & IPIPE_IRQF_NOACK)
		IPIPE_WARN_ONCE(chained_irq);
	else {
		ipd = ipipe_head_domain;
		control = ipd->irqs[irq].control;
		if ((control & IPIPE_HANDLE_MASK) == 0)
			ipd = ipipe_root_domain;
		if (ipd->irqs[irq].ackfn)
			ipd->irqs[irq].ackfn(desc);
		if (chained_irq) {
			if ((flags & IPIPE_IRQF_NOSYNC) == 0)
				/* Run demuxed IRQ handlers. */
				goto sync;
			return;
		}
	}

	/*
	 * Sticky interrupts must be handled early and separately, so
	 * that we always process them on the current domain.
	 */
	ipd = __ipipe_current_domain;
	control = ipd->irqs[irq].control;
	if (control & IPIPE_STICKY_MASK)
		goto log;

	/*
	 * In case we have no registered head domain
	 * (i.e. ipipe_head_domain == &ipipe_root), we always go
	 * through the interrupt log, and leave the dispatching work
	 * ultimately to __ipipe_sync_pipeline().
	 */
	ipd = ipipe_head_domain;
	control = ipd->irqs[irq].control;
	if (ipd == ipipe_root_domain)
		/*
		 * The root domain must handle all interrupts, so
		 * testing the HANDLE bit would be pointless.
		 */
		goto log;

	if (control & IPIPE_HANDLE_MASK) {
		if (unlikely(flags & IPIPE_IRQF_NOSYNC))
			__ipipe_set_irq_pending(ipd, irq);
		else
			dispatch_irq_head(irq);
		return;
	}

	ipd = ipipe_root_domain;
log:
	__ipipe_set_irq_pending(ipd, irq);

	if (flags & IPIPE_IRQF_NOSYNC)
		return;

	/*
	 * Optimize if we preempted a registered high priority head
	 * domain: we don't need to synchronize the pipeline unless
	 * there is a pending interrupt for it.
	 */
	if (!__ipipe_root_p &&
	    !__ipipe_ipending_p(ipipe_this_cpu_head_context()))
		return;
sync:
	__ipipe_sync_pipeline(ipipe_head_domain);
}

void ipipe_raise_irq(unsigned int irq)
{
	struct ipipe_domain *ipd = ipipe_head_domain;
	unsigned long flags, control;

	flags = hard_local_irq_save();

	/*
	 * Fast path: raising a virtual IRQ handled by the head
	 * domain.
	 */
	if (likely(ipipe_virtual_irq_p(irq) && ipd != ipipe_root_domain)) {
		control = ipd->irqs[irq].control;
		if (likely(control & IPIPE_HANDLE_MASK)) {
			dispatch_irq_head(irq);
			goto out;
		}
	}

	/* Emulate regular device IRQ receipt. */
	__ipipe_dispatch_irq(irq, IPIPE_IRQF_NOACK);
out:
	hard_local_irq_restore(flags);

}
EXPORT_SYMBOL_GPL(ipipe_raise_irq);

#ifdef CONFIG_PREEMPT

void preempt_schedule_irq(void);

void __sched __ipipe_preempt_schedule_irq(void)
{
	struct ipipe_percpu_domain_data *p;
	unsigned long flags;

	if (WARN_ON_ONCE(!hard_irqs_disabled()))
		hard_local_irq_disable();

	local_irq_save(flags);
	hard_local_irq_enable();
	preempt_schedule_irq(); /* Ok, may reschedule now. */
	hard_local_irq_disable();

	/*
	 * Flush any pending interrupt that may have been logged after
	 * preempt_schedule_irq() stalled the root stage before
	 * returning to us, and now.
	 */
	p = ipipe_this_cpu_root_context();
	if (unlikely(__ipipe_ipending_p(p))) {
		trace_hardirqs_on();
		__clear_bit(IPIPE_STALL_FLAG, &p->status);
		__ipipe_sync_stage();
	}

	__ipipe_restore_root_nosync(flags);
}

#else /* !CONFIG_PREEMPT */

#define __ipipe_preempt_schedule_irq()	do { } while (0)

#endif	/* !CONFIG_PREEMPT */

#ifdef CONFIG_TRACE_IRQFLAGS
#define root_stall_after_handler()	local_irq_disable()
#else
#define root_stall_after_handler()	do { } while (0)
#endif

/*
 * __ipipe_do_sync_stage() -- Flush the pending IRQs for the current
 * domain (and processor). This routine flushes the interrupt log (see
 * "Optimistic interrupt protection" from D. Stodolsky et al. for more
 * on the deferred interrupt scheme). Every interrupt that occurred
 * while the pipeline was stalled gets played.
 *
 * WARNING: CPU migration may occur over this routine.
 */
void __ipipe_do_sync_stage(void)
{
	struct ipipe_percpu_domain_data *p;
	struct ipipe_domain *ipd;
	int irq;

	p = __ipipe_current_context;
respin:
	ipd = p->domain;

	__set_bit(IPIPE_STALL_FLAG, &p->status);
	smp_wmb();

	if (ipd == ipipe_root_domain)
		trace_hardirqs_off();

	for (;;) {
		irq = __ipipe_next_irq(p);
		if (irq < 0)
			break;
		/*
		 * Make sure the compiler does not reorder wrongly, so
		 * that all updates to maps are done before the
		 * handler gets called.
		 */
		barrier();

		if (test_bit(IPIPE_LOCK_FLAG, &ipd->irqs[irq].control))
			continue;

		if (ipd != ipipe_head_domain)
			hard_local_irq_enable();

		if (likely(ipd != ipipe_root_domain)) {
			ipd->irqs[irq].handler(irq, ipd->irqs[irq].cookie);
			__ipipe_run_irqtail(irq);
			hard_local_irq_disable();
		} else if (ipipe_virtual_irq_p(irq)) {
			irq_enter();
			ipd->irqs[irq].handler(irq, ipd->irqs[irq].cookie);
			irq_exit();
			root_stall_after_handler();
			hard_local_irq_disable();
		} else {
			ipd->irqs[irq].handler(irq, ipd->irqs[irq].cookie);
			root_stall_after_handler();
			hard_local_irq_disable();
		}

		/*
		 * We may have migrated to a different CPU (1) upon
		 * return from the handler, or downgraded from the
		 * head domain to the root one (2), the opposite way
		 * is NOT allowed though.
		 *
		 * (1) reload the current per-cpu context pointer, so
		 * that we further pull pending interrupts from the
		 * proper per-cpu log.
		 *
		 * (2) check the stall bit to know whether we may
		 * dispatch any interrupt pending for the root domain,
		 * and respin the entire dispatch loop if
		 * so. Otherwise, immediately return to the caller,
		 * _without_ affecting the stall state for the root
		 * domain, since we do not own it at this stage.  This
		 * case is basically reflecting what may happen in
		 * dispatch_irq_head() for the fast path.
		 */
		p = __ipipe_current_context;
		if (p->domain != ipd) {
			IPIPE_BUG_ON(ipd == ipipe_root_domain);
			if (test_bit(IPIPE_STALL_FLAG, &p->status))
				return;
			goto respin;
		}
	}

	if (ipd == ipipe_root_domain)
		trace_hardirqs_on();

	__clear_bit(IPIPE_STALL_FLAG, &p->status);
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
void __ipipe_call_mayday(struct pt_regs *regs)
{
	unsigned long flags;

	ipipe_clear_thread_flag(TIP_MAYDAY);
	flags = hard_local_irq_save();
	__ipipe_notify_trap(IPIPE_TRAP_MAYDAY, regs);
	hard_local_irq_restore(flags);
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
#ifdef CONFIG_SMP

/* Always called with hw interrupts off. */
void __ipipe_do_critical_sync(unsigned int irq, void *cookie)
{
	int cpu = ipipe_processor_id();

	cpumask_set_cpu(cpu, &__ipipe_cpu_sync_map);

	/*
	 * Now we are in sync with the lock requestor running on
	 * another CPU. Enter a spinning wait until he releases the
	 * global lock.
	 */
	raw_spin_lock(&__ipipe_cpu_barrier);

	/* Got it. Now get out. */

	/* Call the sync routine if any. */
	if (__ipipe_cpu_sync)
		__ipipe_cpu_sync();

	cpumask_set_cpu(cpu, &__ipipe_cpu_pass_map);

	raw_spin_unlock(&__ipipe_cpu_barrier);

	cpumask_clear_cpu(cpu, &__ipipe_cpu_sync_map);
}
#endif	/* CONFIG_SMP */

unsigned long ipipe_critical_enter(void (*syncfn)(void))
{
	cpumask_t allbutself __maybe_unused, online __maybe_unused;
	int cpu __maybe_unused, n __maybe_unused;
	unsigned long flags, loops __maybe_unused;

	flags = hard_local_irq_save();

	if (num_online_cpus() == 1)
		return flags;

#ifdef CONFIG_SMP

	cpu = ipipe_processor_id();
	if (!cpumask_test_and_set_cpu(cpu, &__ipipe_cpu_lock_map)) {
		while (test_and_set_bit(0, &__ipipe_critical_lock)) {
			n = 0;
			hard_local_irq_enable();

			do
				cpu_relax();
			while (++n < cpu);

			hard_local_irq_disable();
		}
restart:
		online = *cpu_online_mask;
		raw_spin_lock(&__ipipe_cpu_barrier);

		__ipipe_cpu_sync = syncfn;

		cpumask_clear(&__ipipe_cpu_pass_map);
		cpumask_set_cpu(cpu, &__ipipe_cpu_pass_map);

		/*
		 * Send the sync IPI to all processors but the current
		 * one.
		 */
		cpumask_andnot(&allbutself, &online, &__ipipe_cpu_pass_map);
		ipipe_send_ipi(IPIPE_CRITICAL_IPI, allbutself);
		loops = IPIPE_CRITICAL_TIMEOUT;

		while (!cpumask_equal(&__ipipe_cpu_sync_map, &allbutself)) {
			if (--loops > 0) {
				cpu_relax();
				continue;
			}
			/*
			 * We ran into a deadlock due to a contended
			 * rwlock. Cancel this round and retry.
			 */
			__ipipe_cpu_sync = NULL;

			raw_spin_unlock(&__ipipe_cpu_barrier);
			/*
			 * Ensure all CPUs consumed the IPI to avoid
			 * running __ipipe_cpu_sync prematurely. This
			 * usually resolves the deadlock reason too.
			 */
			while (!cpumask_equal(&online, &__ipipe_cpu_pass_map))
				cpu_relax();

			goto restart;
		}
	}

	atomic_inc(&__ipipe_critical_count);

#endif	/* CONFIG_SMP */

	return flags;
}
EXPORT_SYMBOL_GPL(ipipe_critical_enter);

void ipipe_critical_exit(unsigned long flags)
{
	if (num_online_cpus() == 1) {
		hard_local_irq_restore(flags);
		return;
	}

#ifdef CONFIG_SMP
	if (atomic_dec_and_test(&__ipipe_critical_count)) {
		raw_spin_unlock(&__ipipe_cpu_barrier);
		while (!cpumask_empty(&__ipipe_cpu_sync_map))
			cpu_relax();
		cpumask_clear_cpu(ipipe_processor_id(), &__ipipe_cpu_lock_map);
		clear_bit(0, &__ipipe_critical_lock);
		smp_mb__after_atomic();
	}
#endif /* CONFIG_SMP */

	hard_local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(ipipe_critical_exit);

#ifdef CONFIG_IPIPE_DEBUG_CONTEXT

void ipipe_root_only(void)
{
	struct ipipe_domain *this_domain;
	unsigned long flags;

	flags = hard_smp_local_irq_save();

	this_domain = __ipipe_current_domain;
	if (likely(this_domain == ipipe_root_domain &&
		   !test_bit(IPIPE_STALL_FLAG, &__ipipe_head_status))) {
		hard_smp_local_irq_restore(flags);
		return;
	}

	if (!__this_cpu_read(ipipe_percpu.context_check)) {
		hard_smp_local_irq_restore(flags);
		return;
	}

	hard_smp_local_irq_restore(flags);

	ipipe_prepare_panic();
Philippe Gerum's avatar
Philippe Gerum committed
1759
	ipipe_trace_panic_freeze();
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

	if (this_domain != ipipe_root_domain)
		pr_err("I-pipe: Detected illicit call from head domain '%s'\n"
		       "        into a regular Linux service\n",
		       this_domain->name);
	else
		pr_err("I-pipe: Detected stalled head domain, "
			"probably caused by a bug.\n"
			"        A critical section may have been "
			"left unterminated.\n");
	dump_stack();
Philippe Gerum's avatar
Philippe Gerum committed
1771
	ipipe_trace_panic_dump();
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
}
EXPORT_SYMBOL(ipipe_root_only);

#endif /* CONFIG_IPIPE_DEBUG_CONTEXT */

#if defined(CONFIG_IPIPE_DEBUG_INTERNAL) && defined(CONFIG_SMP)

unsigned long notrace __ipipe_cpu_get_offset(void)
{
	struct ipipe_domain *this_domain;
	unsigned long flags;
	bool bad = false;

	flags = hard_local_irq_save_notrace();
	if (raw_irqs_disabled_flags(flags))
		goto out;

	/*
	 * Only the root domain may implement preemptive CPU migration
	 * of tasks, so anything above in the pipeline should be fine.
	 * CAUTION: we want open coded access to the current domain,
	 * don't use __ipipe_current_domain here, this would recurse
	 * indefinitely.
	 */
	this_domain = raw_cpu_read(ipipe_percpu.curr)->domain;
	if (this_domain != ipipe_root_domain)
		goto out;

	/*
	 * Since we run on the root stage with hard irqs enabled, we
	 * need preemption to be disabled.  Otherwise, our caller may
	 * end up accessing the wrong per-cpu variable instance due to
	 * CPU migration, complain loudly.
	 */
	if (preempt_count() == 0 && !irqs_disabled())
		bad = true;
out:
	hard_local_irq_restore_notrace(flags);

	WARN_ON_ONCE(bad);

	return __my_cpu_offset;
}
EXPORT_SYMBOL(__ipipe_cpu_get_offset);

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
void __ipipe_spin_unlock_debug(unsigned long flags)
{
	/*
	 * We catch a nasty issue where spin_unlock_irqrestore() on a
	 * regular kernel spinlock is about to re-enable hw interrupts
	 * in a section entered with hw irqs off. This is clearly the
	 * sign of a massive breakage coming. Usual suspect is a
	 * regular spinlock which was overlooked, used within a
	 * section which must run with hw irqs disabled.
	 */
	IPIPE_WARN_ONCE(!raw_irqs_disabled_flags(flags) && hard_irqs_disabled());
}
EXPORT_SYMBOL(__ipipe_spin_unlock_debug);

1831 1832 1833 1834
#endif /* CONFIG_IPIPE_DEBUG_INTERNAL && CONFIG_SMP */

void ipipe_prepare_panic(void)
{
1835 1836 1837
#ifdef CONFIG_PRINTK
	__ipipe_printk_bypass = 1;
#endif
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	ipipe_context_check_off();
}
EXPORT_SYMBOL_GPL(ipipe_prepare_panic);

static void __ipipe_do_work(unsigned int virq, void *cookie)
{
	struct ipipe_work_header *work;
	unsigned long flags;
	void *curr, *tail;
	int cpu;

	/*
	 * Work is dispatched in enqueuing order. This interrupt
	 * context can't migrate to another CPU.
	 */
	cpu = smp_processor_id();
	curr = per_cpu(work_buf, cpu);

	for (;;) {
		flags = hard_local_irq_save();
		tail = per_cpu(work_tail, cpu);
		if (curr == tail) {
			per_cpu(work_tail, cpu) = per_cpu(work_buf, cpu);
			hard_local_irq_restore(flags);
			return;
		}
		work = curr;
		curr += work->size;
		hard_local_irq_restore(flags);
		work->handler(work);
	}
}

void __ipipe_post_work_root(struct ipipe_work_header *work)
{
	unsigned long flags;
	void *tail;
	int cpu;

	/*
	 * Subtle: we want to use the head stall/unstall operators,
	 * not the hard_* routines to protect against races. This way,
	 * we ensure that a root-based caller will trigger the virq
	 * handling immediately when unstalling the head stage, as a
	 * result of calling __ipipe_sync_pipeline() under the hood.
	 */
	flags = ipipe_test_and_stall_head();
	cpu = ipipe_processor_id();
	tail = per_cpu(work_tail, cpu);

	if (WARN_ON_ONCE((unsigned char *)tail + work->size >=
			 per_cpu(work_buf, cpu) + WORKBUF_SIZE))
		goto out;

	/* Work handling is deferred, so data has to be copied. */
	memcpy(tail, work, work->size);
	per_cpu(work_tail, cpu) = tail + work->size;
	ipipe_post_irq_root(__ipipe_work_virq);
out:
	ipipe_restore_head(flags);
}
EXPORT_SYMBOL_GPL(__ipipe_post_work_root);

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
void __weak __ipipe_arch_share_current(int flags)
{
}

void __ipipe_share_current(int flags)
{
	ipipe_root_only();

	__ipipe_arch_share_current(flags);
}
EXPORT_SYMBOL_GPL(__ipipe_share_current);

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || defined(CONFIG_PROVE_LOCKING) || \
	defined(CONFIG_PREEMPT_VOLUNTARY) || defined(CONFIG_IPIPE_DEBUG_CONTEXT)
void __ipipe_uaccess_might_fault(void)
{
	struct ipipe_percpu_domain_data *pdd;
	struct ipipe_domain *ipd;
	unsigned long flags;

	flags = hard_local_irq_save();
	ipd = __ipipe_current_domain;
	if (ipd == ipipe_root_domain) {
		hard_local_irq_restore(flags);
		might_fault();
		return;
	}

#ifdef CONFIG_IPIPE_DEBUG_CONTEXT
	pdd = ipipe_this_cpu_context(ipd);
	WARN_ON_ONCE(hard_irqs_disabled_flags(flags)
		     || test_bit(IPIPE_STALL_FLAG, &pdd->status));
#else /* !CONFIG_IPIPE_DEBUG_CONTEXT */
	(void)pdd;
#endif /* !CONFIG_IPIPE_DEBUG_CONTEXT */
	hard_local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(__ipipe_uaccess_might_fault);
#endif