Commits (6111)

Too many changes to show.

To preserve performance only 1000 of 1000+ files are displayed.

......@@ -7,38 +7,40 @@
# command after changing this file, to see if there are
# any tracked files which get ignored after the change.
# Normal rules
# Normal rules (sorted alphabetically)
# Top-level generic files
......@@ -53,6 +55,11 @@ Module.symvers
# RPM spec file (make rpm-pkg)
# Debian directory (make deb-pkg)
......@@ -32,7 +32,7 @@ Description:
Description of the physical chip / device for device X.
Typically a part number.
What: /sys/bus/iio/devices/iio:deviceX/timestamp_clock
What: /sys/bus/iio/devices/iio:deviceX/current_timestamp_clock
KernelVersion: 4.5
Contact: linux-iio@vger.kernel.org
......@@ -69,7 +69,9 @@ Date: September 2014
Contact: linuxppc-dev@lists.ozlabs.org
Description: read/write
Set the mode for prefaulting in segments into the segment table
when performing the START_WORK ioctl. Possible values:
when performing the START_WORK ioctl. Only applicable when
running under hashed page table mmu.
Possible values:
none: No prefaulting (default)
work_element_descriptor: Treat the work element
descriptor as an effective address and
......@@ -373,3 +373,20 @@ Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: information about CPUs heterogeneity.
cpu_capacity: capacity of cpu#.
What: /sys/devices/system/cpu/vulnerabilities
Date: January 2018
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Information about CPU vulnerabilities
The files are named after the code names of CPU
vulnerabilities. The output of those files reflects the
state of the CPUs in the system. Possible output values:
"Not affected" CPU is not affected by the vulnerability
"Vulnerable" CPU is affected and no mitigation in effect
"Mitigation: $M" CPU is affected and mitigation $M is in effect
......@@ -1841,13 +1841,6 @@
the default is off.
kmemcheck= [X86] Boot-time kmemcheck enable/disable/one-shot mode
Valid arguments: 0, 1, 2
kmemcheck=0 (disabled)
kmemcheck=1 (enabled)
kmemcheck=2 (one-shot mode)
Default: 2 (one-shot mode)
kvm.ignore_msrs=[KVM] Ignore guest accesses to unhandled MSRs.
Default is 0 (don't ignore, but inject #GP)
......@@ -2548,6 +2541,9 @@
noalign [KNL,ARM]
noaltinstr [S390] Disables alternative instructions patching
(CPU alternatives feature).
noapic [SMP,APIC] Tells the kernel to not make use of any
IOAPICs that may be present in the system.
......@@ -2599,6 +2595,14 @@
nosmt [KNL,S390] Disable symmetric multithreading (SMT).
Equivalent to smt=1.
nospectre_v2 [X86] Disable all mitigations for the Spectre variant 2
(indirect branch prediction) vulnerability. System may
allow data leaks with this option, which is equivalent
to spectre_v2=off.
[HW] Disable all mitigations for the Speculative Store Bypass vulnerability
noxsave [BUGS=X86] Disables x86 extended register state save
and restore using xsave. The kernel will fallback to
enabling legacy floating-point and sse state.
......@@ -2713,8 +2717,6 @@
norandmaps Don't use address space randomization. Equivalent to
echo 0 > /proc/sys/kernel/randomize_va_space
noreplace-paravirt [X86,IA-64,PV_OPS] Don't patch paravirt_ops
noreplace-smp [X86-32,SMP] Don't replace SMP instructions
with UP alternatives
......@@ -3253,6 +3255,21 @@
pt. [PARIDE]
See Documentation/blockdev/paride.txt.
pti= [X86_64] Control Page Table Isolation of user and
kernel address spaces. Disabling this feature
removes hardening, but improves performance of
system calls and interrupts.
on - unconditionally enable
off - unconditionally disable
auto - kernel detects whether your CPU model is
vulnerable to issues that PTI mitigates
Not specifying this option is equivalent to pti=auto.
nopti [X86_64]
Equivalent to pti=off
[KNL] Number of legacy pty's. Overwrites compiled-in
default number.
......@@ -3893,6 +3910,71 @@
sonypi.*= [HW] Sony Programmable I/O Control Device driver
See Documentation/laptops/sonypi.txt
spectre_v2= [X86] Control mitigation of Spectre variant 2
(indirect branch speculation) vulnerability.
on - unconditionally enable
off - unconditionally disable
auto - kernel detects whether your CPU model is
Selecting 'on' will, and 'auto' may, choose a
mitigation method at run time according to the
CPU, the available microcode, the setting of the
CONFIG_RETPOLINE configuration option, and the
compiler with which the kernel was built.
Specific mitigations can also be selected manually:
retpoline - replace indirect branches
retpoline,generic - google's original retpoline
retpoline,amd - AMD-specific minimal thunk
Not specifying this option is equivalent to
[HW] Control Speculative Store Bypass (SSB) Disable mitigation
(Speculative Store Bypass vulnerability)
Certain CPUs are vulnerable to an exploit against a
a common industry wide performance optimization known
as "Speculative Store Bypass" in which recent stores
to the same memory location may not be observed by
later loads during speculative execution. The idea
is that such stores are unlikely and that they can
be detected prior to instruction retirement at the
end of a particular speculation execution window.
In vulnerable processors, the speculatively forwarded
store can be used in a cache side channel attack, for
example to read memory to which the attacker does not
directly have access (e.g. inside sandboxed code).
This parameter controls whether the Speculative Store
Bypass optimization is used.
on - Unconditionally disable Speculative Store Bypass
off - Unconditionally enable Speculative Store Bypass
auto - Kernel detects whether the CPU model contains an
implementation of Speculative Store Bypass and
picks the most appropriate mitigation. If the
CPU is not vulnerable, "off" is selected. If the
CPU is vulnerable the default mitigation is
architecture and Kconfig dependent. See below.
prctl - Control Speculative Store Bypass per thread
via prctl. Speculative Store Bypass is enabled
for a process by default. The state of the control
is inherited on fork.
seccomp - Same as "prctl" above, but all seccomp threads
will disable SSB unless they explicitly opt out.
Not specifying this option is equivalent to
Default mitigations:
X86: If CONFIG_SECCOMP=y "seccomp", otherwise "prctl"
spia_io_base= [HW,MTD]
......@@ -3915,6 +3997,23 @@
expediting. Set to zero to disable automatic
ssbd= [ARM64,HW]
Speculative Store Bypass Disable control
On CPUs that are vulnerable to the Speculative
Store Bypass vulnerability and offer a
firmware based mitigation, this parameter
indicates how the mitigation should be used:
force-on: Unconditionally enable mitigation for
for both kernel and userspace
force-off: Unconditionally disable mitigation for
for both kernel and userspace
kernel: Always enable mitigation in the
kernel, and offer a prctl interface
to allow userspace to register its
interest in being mitigated too.
stack_guard_gap= [MM]
override the default stack gap protection. The value
is in page units and it defines how many pages prior
......@@ -55,6 +55,7 @@ stable kernels.
| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
| ARM | Cortex-A72 | #853709 | N/A |
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
| ARM | Cortex-A55 | #1024718 | ARM64_ERRATUM_1024718 |
| ARM | MMU-500 | #841119,#826419 | N/A |
| | | | |
| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 |
......@@ -71,6 +72,7 @@ stable kernels.
| Hisilicon | Hip0{5,6,7} | #161010101 | HISILICON_ERRATUM_161010101 |
| Hisilicon | Hip0{6,7} | #161010701 | N/A |
| | | | |
| Qualcomm Tech. | Falkor v1 | E1003 | QCOM_FALKOR_ERRATUM_1003 |
| Qualcomm Tech. | Kryo/Falkor v1 | E1003 | QCOM_FALKOR_ERRATUM_1003 |
| Qualcomm Tech. | Falkor v1 | E1009 | QCOM_FALKOR_ERRATUM_1009 |
| Qualcomm Tech. | QDF2400 ITS | E0065 | QCOM_QDF2400_ERRATUM_0065 |
| Qualcomm Tech. | Falkor v{1,2} | E1041 | QCOM_FALKOR_ERRATUM_1041 |
......@@ -21,7 +21,6 @@ whole; patches welcome!
This diff is collapsed.
......@@ -112,9 +112,11 @@ $low_water_mark is expressed in blocks of size $data_block_size. If
free space on the data device drops below this level then a dm event
will be triggered which a userspace daemon should catch allowing it to
extend the pool device. Only one such event will be sent.
Resuming a device with a new table itself triggers an event so the
userspace daemon can use this to detect a situation where a new table
already exceeds the threshold.
No special event is triggered if a just resumed device's free space is below
the low water mark. However, resuming a device always triggers an
event; a userspace daemon should verify that free space exceeds the low
water mark when handling this event.
A low water mark for the metadata device is maintained in the kernel and
will trigger a dm event if free space on the metadata device drops below
......@@ -20,6 +20,7 @@ Required properties :
- "allwinner,sun50i-a64-ccu"
- "allwinner,sun50i-a64-r-ccu"
- "allwinner,sun50i-h5-ccu"
- "allwinner,sun50i-h6-ccu"
- "nextthing,gr8-ccu"
- reg: Must contain the registers base address and length
......@@ -31,6 +32,9 @@ Required properties :
- #clock-cells : must contain 1
- #reset-cells : must contain 1
For the main CCU on H6, one more clock is needed:
- "iosc": the SoC's internal frequency oscillator
For the PRCM CCUs on A83T/H3/A64, two more clocks are needed:
- "pll-periph": the SoC's peripheral PLL from the main CCU
- "iosc": the SoC's internal frequency oscillator
......@@ -38,7 +38,7 @@ Display Timings
require specific display timings. The panel-timing subnode expresses those
timings as specified in the timing subnode section of the display timing
bindings defined in
......@@ -2,7 +2,7 @@ Toppoly TD028TTEC1 Panel
Required properties:
- compatible: "toppoly,td028ttec1"
- compatible: "tpo,td028ttec1"
Optional properties:
- label: a symbolic name for the panel
......@@ -14,7 +14,7 @@ Example
lcd-panel: td028ttec1@0 {
compatible = "toppoly,td028ttec1";
compatible = "tpo,td028ttec1";
reg = <0>;
spi-max-frequency = <100000>;
......@@ -11,7 +11,11 @@ Required properties:
Optional properties:
- clocks: Optional reference to the clock used by the XOR engine.
- clocks: Optional reference to the clocks used by the XOR engine.
- clock-names: mandatory if there is a second clock, in this case the
name must be "core" for the first clock and "reg" for the second
......@@ -25,6 +25,7 @@ Required Properties:
- "renesas,dmac-r8a7794" (R-Car E2)
- "renesas,dmac-r8a7795" (R-Car H3)
- "renesas,dmac-r8a7796" (R-Car M3-W)
- "renesas,dmac-r8a77965" (R-Car M3-N)
- "renesas,dmac-r8a77970" (R-Car V3M)
- reg: base address and length of the registers block for the DMAC
......@@ -64,6 +64,6 @@ Example:
reg = <0xe0000000 0x1000>;
interrupts = <0 35 0x4>;
dmas = <&dmahost 12 0 1>,
<&dmahost 13 0 1 0>;
<&dmahost 13 1 0>;
dma-names = "rx", "rx";
......@@ -34,6 +34,10 @@ Required properties:
- reg: I2C address
Optional properties:
- smbus-timeout-disable: When set, the smbus timeout function will be disabled.
This is not supported on all chips.
temp-sensor@1a {
......@@ -10,6 +10,7 @@ Required properties:
......@@ -2,7 +2,10 @@
Required properties:
- compatible: should be "qca,qca8337"
- compatible: should be one of:
- #size-cells: must be 0
- #address-cells: must be 1
......@@ -14,6 +17,20 @@ port and PHY id, each subnode describing a port needs to have a valid phandle
referencing the internal PHY connected to it. The CPU port of this switch is
always port 0.
A CPU port node has the following optional node:
- fixed-link : Fixed-link subnode describing a link to a non-MDIO
managed entity. See
for details.
For QCA8K the 'fixed-link' sub-node supports only the following properties:
- 'speed' (integer, mandatory), to indicate the link speed. Accepted
values are 10, 100 and 1000
- 'full-duplex' (boolean, optional), to indicate that full duplex is
used. When absent, half duplex is assumed.
......@@ -53,6 +70,10 @@ Example:
label = "cpu";
ethernet = <&gmac1>;
phy-mode = "rgmii";
fixed-link {
speed = 1000;
port@1 {
......@@ -10,6 +10,7 @@ Required properties on all platforms:
- "amlogic,meson6-dwmac"
- "amlogic,meson8b-dwmac"
- "amlogic,meson-gxbb-dwmac"
- "amlogic,meson-axg-dwmac"
Additionally "snps,dwmac" and any applicable more
detailed version number described in net/stmmac.txt
should be used.
......@@ -55,9 +55,9 @@ pins it needs, and how they should be configured, with regard to muxer
configuration, drive strength and pullups. If one of these options is
not set, its actual value will be unspecified.
This driver supports the generic pin multiplexing and configuration
bindings. For details on each properties, you can refer to
Allwinner A1X Pin Controller supports the generic pin multiplexing and
configuration bindings. For details on each properties, you can refer to
Required sub-node properties:
- pins
......@@ -20,7 +20,8 @@ Required subnode-properties:
gpio: cpuclkoutgrp0, udlclkoutgrp0, i2c1grp0, i2c2grp0,
i2c3grp0, i2s0grp0, i2s1grp0, i2srefclkgrp0, spi0grp0,
spi1grp0, pciedebuggrp0, uart0grp0, uart0grp1, uart1grp0,
uart2grp0, uart2grp1, uart3grp0, uart4grp0, uart5grp0
uart2grp0, uart2grp1, uart3grp0, uart4grp0, uart5grp0,
cpuclkout: cpuclkoutgrp0
udlclkout: udlclkoutgrp0
i2c1: i2c1grp0
......@@ -37,7 +38,7 @@ Required subnode-properties:
uart2: uart2grp0, uart2grp1
uart3: uart3grp0
uart4: uart4grp0
uart5: uart5grp0
uart5: uart5grp0, uart5nocts
nand: nandgrp0
sdio0: sdio0grp0
sdio1: sdio1grp0
......@@ -3,8 +3,10 @@
Required properties for the root node:
- compatible: one of "amlogic,meson8-cbus-pinctrl"
Binding for MIPS Cluster Power Controller (CPC).
This binding allows a system to specify where the CPC registers are
Required properties:
compatible : Should be "mti,mips-cpc".
regs: Should describe the address & size of the CPC register region.
......@@ -24,6 +24,7 @@ Required properties:
- "ti,da830-uart"
- "aspeed,ast2400-vuart"
- "aspeed,ast2500-vuart"
- "nuvoton,npcm750-uart"
- "serial" if the port type is unknown.
- reg : offset and length of the register set for the device.
- interrupts : should contain uart interrupt.