slab.c 110 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
Linus Torvalds's avatar
Linus Torvalds committed
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
30
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
54
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
55 56 57 58
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
59
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
60 61 62 63 64 65 66 67 68 69 70 71
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
72
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
73 74 75 76 77 78
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
79 80 81 82 83 84 85 86 87
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
88 89 90 91
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
120
#include	<linux/sched/task_stack.h>
Linus Torvalds's avatar
Linus Torvalds committed
121

122 123
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
124 125 126 127
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

128 129
#include <trace/events/kmem.h>

130 131
#include	"internal.h"

132 133
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
134
/*
135
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
156
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
157 158 159 160 161

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

162 163 164 165 166 167 168 169 170
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

171
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172

Linus Torvalds's avatar
Linus Torvalds committed
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
190
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
191 192 193 194
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
Linus Torvalds's avatar
Linus Torvalds committed
195 196
};

Joonsoo Kim's avatar
Joonsoo Kim committed
197 198 199 200 201
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

202 203 204
/*
 * Need this for bootstrapping a per node allocator.
 */
205
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207
#define	CACHE_CACHE 0
208
#define	SIZE_NODE (MAX_NUMNODES)
209

210
static int drain_freelist(struct kmem_cache *cache,
211
			struct kmem_cache_node *n, int tofree);
212
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 214
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216
static void cache_reap(struct work_struct *unused);
217

218 219 220 221 222
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
223 224
static int slab_early_init = 1;

225
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
226

227
static void kmem_cache_node_init(struct kmem_cache_node *parent)
228 229 230 231
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
232
	parent->total_slabs = 0;
233
	parent->free_slabs = 0;
234 235
	parent->shared = NULL;
	parent->alien = NULL;
236
	parent->colour_next = 0;
237 238 239 240 241
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
242 243 244
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
245
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
246 247
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
248 249
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
250 251 252 253
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
254

255
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
Linus Torvalds's avatar
Linus Torvalds committed
256
#define CFLGS_OFF_SLAB		(0x80000000UL)
257
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
Linus Torvalds's avatar
Linus Torvalds committed
258 259 260
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
261 262 263
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
264
 *
Adrian Bunk's avatar
Adrian Bunk committed
265
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
266 267
 * which could lock up otherwise freeable slabs.
 */
268 269
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
270 271 272 273 274 275

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
276
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
277 278 279 280 281
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
282 283
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
284
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
285
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
286 287 288 289 290
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
291 292 293 294 295 296 297 298 299
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
300
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
301 302 303
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
304
#define	STATS_INC_NODEFREES(x)	do { } while (0)
305
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
306
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
307 308 309 310 311 312 313 314
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
315 316
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
317
 * 0		: objp
318
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
319 320
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
321
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
322
 * 		redzone word.
323
 * cachep->obj_offset: The real object.
324 325
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
326
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
327
 */
328
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
329
{
330
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
331 332
}

333
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
334 335
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
336 337
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
338 339
}

340
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
341 342 343
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
344
		return (unsigned long long *)(objp + cachep->size -
345
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
346
					      REDZONE_ALIGN);
347
	return (unsigned long long *) (objp + cachep->size -
348
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
349 350
}

351
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
352 353
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
354
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
355 356 357 358
}

#else

359
#define obj_offset(x)			0
360 361
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
362 363 364 365
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

366 367
#ifdef CONFIG_DEBUG_SLAB_LEAK

368
static inline bool is_store_user_clean(struct kmem_cache *cachep)
369
{
370 371
	return atomic_read(&cachep->store_user_clean) == 1;
}
372

373 374 375 376
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
377

378 379 380 381
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
382 383 384
}

#else
385
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
386 387 388

#endif

Linus Torvalds's avatar
Linus Torvalds committed
389
/*
390 391
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
392
 */
393 394 395
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
396
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
397

398 399
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
400
	struct page *page = virt_to_head_page(obj);
401
	return page->slab_cache;
402 403
}

404
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 406
				 unsigned int idx)
{
407
	return page->s_mem + cache->size * idx;
408 409
}

410
/*
411 412 413
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
414 415 416
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417
					const struct page *page, void *obj)
418
{
419
	u32 offset = (obj - page->s_mem);
420
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
421 422
}

423
#define BOOT_CPUCACHE_ENTRIES	1
Linus Torvalds's avatar
Linus Torvalds committed
424
/* internal cache of cache description objs */
425
static struct kmem_cache kmem_cache_boot = {
426 427 428
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
429
	.size = sizeof(struct kmem_cache),
430
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
431 432
};

433
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
434

435
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
436
{
437
	return this_cpu_ptr(cachep->cpu_cache);
Linus Torvalds's avatar
Linus Torvalds committed
438 439
}

Andrew Morton's avatar
Andrew Morton committed
440 441 442
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
443 444
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
445
{
446
	unsigned int num;
447
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
448

449 450 451 452 453 454
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
455 456 457 458 459
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
460 461 462 463 464 465
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
466
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
467
		num = slab_size / buffer_size;
468
		*left_over = slab_size % buffer_size;
469
	} else {
470
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
471 472
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
473
	}
474 475

	return num;
Linus Torvalds's avatar
Linus Torvalds committed
476 477
}

478
#if DEBUG
479
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
480

Andrew Morton's avatar
Andrew Morton committed
481 482
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
483
{
484
	pr_err("slab error in %s(): cache `%s': %s\n",
485
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
486
	dump_stack();
487
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
488
}
489
#endif
Linus Torvalds's avatar
Linus Torvalds committed
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

507 508 509 510 511 512 513 514 515 516 517
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

518 519 520 521 522 523 524
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
525
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
526 527 528

static void init_reap_node(int cpu)
{
529 530
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
531 532 533 534
}

static void next_reap_node(void)
{
535
	int node = __this_cpu_read(slab_reap_node);
536

537
	node = next_node_in(node, node_online_map);
538
	__this_cpu_write(slab_reap_node, node);
539 540 541 542 543 544 545
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
546 547 548 549 550 551 552
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
553
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
554
{
555
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
556

557
	if (reap_work->work.func == NULL) {
558
		init_reap_node(cpu);
559
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
560 561
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
562 563 564
	}
}

565
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
566
{
567 568
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
569
	 * However, when such objects are allocated or transferred to another
570 571 572 573
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
574 575 576 577 578 579
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
Linus Torvalds's avatar
Linus Torvalds committed
580
	}
581 582 583 584 585
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
586
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
587 588 589 590 591
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
592 593
}

594 595
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
596
{
597 598 599
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
600

601 602
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
603

604 605 606
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
607

608
	slabs_destroy(cachep, &list);
609 610
}

611 612 613 614 615 616 617 618 619 620
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
621
	int nr = min3(from->avail, max, to->limit - to->avail);
622 623 624 625 626 627 628 629 630 631 632 633

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

634 635 636
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
637
#define reap_alien(cachep, n) do { } while (0)
638

Joonsoo Kim's avatar
Joonsoo Kim committed
639 640
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
641
{
642
	return NULL;
643 644
}

Joonsoo Kim's avatar
Joonsoo Kim committed
645
static inline void free_alien_cache(struct alien_cache **ac_ptr)
646 647 648 649 650 651 652 653 654 655 656 657 658 659
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

660
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
661 662 663 664 665
		 gfp_t flags, int nodeid)
{
	return NULL;
}

David Rientjes's avatar
David Rientjes committed
666 667
static inline gfp_t gfp_exact_node(gfp_t flags)
{
668
	return flags & ~__GFP_NOFAIL;
David Rientjes's avatar
David Rientjes committed
669 670
}

671 672
#else	/* CONFIG_NUMA */

673
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
674
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
675

Joonsoo Kim's avatar
Joonsoo Kim committed
676 677 678
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
679
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
Joonsoo Kim's avatar
Joonsoo Kim committed
680 681 682 683
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
684
	spin_lock_init(&alc->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
685 686 687 688
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
689
{
Joonsoo Kim's avatar
Joonsoo Kim committed
690
	struct alien_cache **alc_ptr;
691
	size_t memsize = sizeof(void *) * nr_node_ids;
692 693 694 695
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
696 697 698 699 700 701 702 703 704 705 706 707 708
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
709 710
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
711
	return alc_ptr;
712 713
}

Joonsoo Kim's avatar
Joonsoo Kim committed
714
static void free_alien_cache(struct alien_cache **alc_ptr)
715 716 717
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
718
	if (!alc_ptr)
719 720
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
721 722
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
723 724
}

725
static void __drain_alien_cache(struct kmem_cache *cachep,
726 727
				struct array_cache *ac, int node,
				struct list_head *list)
728
{
729
	struct kmem_cache_node *n = get_node(cachep, node);
730 731

	if (ac->avail) {
732
		spin_lock(&n->list_lock);
733 734 735 736 737
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
738 739
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
740

741
		free_block(cachep, ac->entry, ac->avail, node, list);
742
		ac->avail = 0;
743
		spin_unlock(&n->list_lock);
744 745 746
	}
}

747 748 749
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
750
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
751
{
752
	int node = __this_cpu_read(slab_reap_node);
753

754
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
755 756 757 758 759
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
760
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
761 762 763
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
764
				spin_unlock_irq(&alc->lock);
765
				slabs_destroy(cachep, &list);
Joonsoo Kim's avatar
Joonsoo Kim committed
766
			}
767 768 769 770
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
771
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
772
				struct alien_cache **alien)
773
{
774
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
775
	struct alien_cache *alc;
776 777 778 779
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
780 781
		alc = alien[i];
		if (alc) {
782 783
			LIST_HEAD(list);

Joonsoo Kim's avatar
Joonsoo Kim committed
784
			ac = &alc->ac;
785
			spin_lock_irqsave(&alc->lock, flags);
786
			__drain_alien_cache(cachep, ac, i, &list);
787
			spin_unlock_irqrestore(&alc->lock, flags);
788
			slabs_destroy(cachep, &list);
789 790 791
		}
	}
}
792

793 794
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
795
{
796
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
797 798
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
799
	LIST_HEAD(list);
800

801
	n = get_node(cachep, node);
802
	STATS_INC_NODEFREES(cachep);
803 804
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
Joonsoo Kim's avatar
Joonsoo Kim committed
805
		ac = &alien->ac;
806
		spin_lock(&alien->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
807
		if (unlikely(ac->avail == ac->limit)) {
808
			STATS_INC_ACOVERFLOW(cachep);
809
			__drain_alien_cache(cachep, ac, page_node, &list);
810
		}
811
		ac->entry[ac->avail++] = objp;
812
		spin_unlock(&alien->lock);
813
		slabs_destroy(cachep, &list);
814
	} else {
815
		n = get_node(cachep, page_node);
816
		spin_lock(&n->list_lock);
817
		free_block(cachep, &objp, 1, page_node, &list);
818
		spin_unlock(&n->list_lock);
819
		slabs_destroy(cachep, &list);
820 821 822
	}
	return 1;
}
823 824 825 826 827 828 829 830 831 832 833 834 835 836

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
David Rientjes's avatar
David Rientjes committed
837 838

/*
839 840
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
David Rientjes's avatar
David Rientjes committed
841 842 843
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
844
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
David Rientjes's avatar
David Rientjes committed
845
}
846 847
#endif

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

888
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
889
/*
890
 * Allocates and initializes node for a node on each slab cache, used for
891
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
892
 * will be allocated off-node since memory is not yet online for the new node.
893
 * When hotplugging memory or a cpu, existing node are not replaced if
894 895
 * already in use.
 *
896
 * Must hold slab_mutex.
897
 */
898
static int init_cache_node_node(int node)
899
{
900
	int ret;
901 902
	struct kmem_cache *cachep;

903
	list_for_each_entry(cachep, &slab_caches, list) {
904 905 906
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
907
	}
908

909 910
	return 0;
}
911
#endif
912

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

962 963 964 965 966 967
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
968
	if (old_shared && force_change)
969 970
		synchronize_sched();

971 972 973 974 975 976 977 978
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

979 980
#ifdef CONFIG_SMP

981
static void cpuup_canceled(long cpu)
982 983
{
	struct kmem_cache *cachep;
984
	struct kmem_cache_node *n = NULL;
985
	int node = cpu_to_mem(cpu);
986
	const struct cpumask *mask = cpumask_of_node(node);
987

988
	list_for_each_entry(cachep, &slab_caches, list) {
989 990
		struct array_cache *nc;
		struct array_cache *shared;
Joonsoo Kim's avatar
Joonsoo Kim committed
991
		struct alien_cache **alien;
992
		LIST_HEAD(list);
993

994
		n = get_node(cachep, node);
995
		if (!n)
996
			continue;
997

998
		spin_lock_irq(&n->list_lock);
999

1000 1001
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1002 1003 1004 1005

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1006
			free_block(cachep, nc->entry, nc->avail, node, &list);
1007 1008
			nc->avail = 0;
		}
1009

1010
		if (!cpumask_empty(mask)) {
1011
			spin_unlock_irq(&n->list_lock);
1012
			goto free_slab;
1013 1014
		}

1015
		shared = n->shared;
1016 1017
		if (shared) {
			free_block(cachep, shared->entry,
1018
				   shared->avail, node, &list);
1019
			n->shared = NULL;
1020 1021
		}

1022 1023
		alien = n->alien;
		n->alien = NULL;
1024

1025
		spin_unlock_irq(&n->list_lock);
1026 1027 1028 1029 1030 1031

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1032 1033

free_slab:
1034
		slabs_destroy(cachep, &list);
1035 1036 1037 1038 1039 1040
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1041
	list_for_each_entry(cachep, &slab_caches, list) {
1042
		n = get_node(cachep, node);
1043
		if (!n)
1044
			continue;
1045
		drain_freelist(cachep, n, INT_MAX);
1046 1047 1048
	}
}

1049
static int cpuup_prepare(long cpu)
Linus Torvalds's avatar
Linus Torvalds committed
1050
{
1051
	struct kmem_cache *cachep;
1052
	int node = cpu_to_mem(cpu);
1053
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1054

1055 1056 1057 1058
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1059
	 * kmem_cache_node and not this cpu's kmem_cache_node
1060
	 */
1061
	err = init_cache_node_node(node);
1062 1063
	if (err < 0)
		goto bad;
1064 1065 1066 1067 1068

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1069
	list_for_each_entry(cachep, &slab_caches, list) {
1070 1071 1072
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1073
	}
1074

1075 1076
	return 0;
bad:
1077
	cpuup_canceled(cpu);
1078 1079 1080
	return -ENOMEM;
}

1081
int slab_prepare_cpu(unsigned int cpu)
1082
{
1083
	int err;
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1108
#endif
1109 1110 1111 1112 1113

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
Linus Torvalds's avatar
Linus Torvalds committed
1129

1130 1131 1132 1133 1134 1135
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1136
 * Must hold slab_mutex.
1137
 */
1138
static int __meminit drain_cache_node_node(int node)
1139 1140 1141 1142
{
	struct kmem_cache *cachep;
	int ret = 0;

1143
	list_for_each_entry(cachep, &slab_caches, list) {
1144
		struct kmem_cache_node *n;
1145

1146
		n = get_node(cachep, node);
1147
		if (!n)
1148 1149
			continue;

1150
		drain_freelist(cachep, n, INT_MAX);
1151

1152 1153
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static