swiotlb-xen.c 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 *  Copyright 2010
 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
 *
 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License v2.0 as published by
 * the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * PV guests under Xen are running in an non-contiguous memory architecture.
 *
 * When PCI pass-through is utilized, this necessitates an IOMMU for
 * translating bus (DMA) to virtual and vice-versa and also providing a
 * mechanism to have contiguous pages for device drivers operations (say DMA
 * operations).
 *
 * Specifically, under Xen the Linux idea of pages is an illusion. It
 * assumes that pages start at zero and go up to the available memory. To
 * help with that, the Linux Xen MMU provides a lookup mechanism to
 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 * memory is not contiguous. Xen hypervisor stitches memory for guests
 * from different pools, which means there is no guarantee that PFN==MFN
 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 * allocated in descending order (high to low), meaning the guest might
 * never get any MFN's under the 4GB mark.
 *
 */

36 37
#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt

38 39
#include <linux/bootmem.h>
#include <linux/dma-mapping.h>
40
#include <linux/export.h>
41 42 43
#include <xen/swiotlb-xen.h>
#include <xen/page.h>
#include <xen/xen-ops.h>
44
#include <xen/hvc-console.h>
45

46
#include <asm/dma-mapping.h>
47
#include <asm/xen/page-coherent.h>
48

49
#include <trace/events/swiotlb.h>
50 51 52 53 54 55
/*
 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 * API.
 */

56 57 58 59 60 61 62 63 64 65 66 67 68 69
#ifndef CONFIG_X86
static unsigned long dma_alloc_coherent_mask(struct device *dev,
					    gfp_t gfp)
{
	unsigned long dma_mask = 0;

	dma_mask = dev->coherent_dma_mask;
	if (!dma_mask)
		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);

	return dma_mask;
}
#endif

70 71 72 73 74 75
static char *xen_io_tlb_start, *xen_io_tlb_end;
static unsigned long xen_io_tlb_nslabs;
/*
 * Quick lookup value of the bus address of the IOTLB.
 */

76
static u64 start_dma_addr;
77

78
static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
79
{
80
	return phys_to_machine(XPADDR(paddr)).maddr;
81 82
}

83
static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
84 85 86 87
{
	return machine_to_phys(XMADDR(baddr)).paddr;
}

88
static inline dma_addr_t xen_virt_to_bus(void *address)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
{
	return xen_phys_to_bus(virt_to_phys(address));
}

static int check_pages_physically_contiguous(unsigned long pfn,
					     unsigned int offset,
					     size_t length)
{
	unsigned long next_mfn;
	int i;
	int nr_pages;

	next_mfn = pfn_to_mfn(pfn);
	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;

	for (i = 1; i < nr_pages; i++) {
		if (pfn_to_mfn(++pfn) != ++next_mfn)
			return 0;
	}
	return 1;
}

111
static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
{
	unsigned long pfn = PFN_DOWN(p);
	unsigned int offset = p & ~PAGE_MASK;

	if (offset + size <= PAGE_SIZE)
		return 0;
	if (check_pages_physically_contiguous(pfn, offset, size))
		return 0;
	return 1;
}

static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
{
	unsigned long mfn = PFN_DOWN(dma_addr);
	unsigned long pfn = mfn_to_local_pfn(mfn);
	phys_addr_t paddr;

	/* If the address is outside our domain, it CAN
	 * have the same virtual address as another address
	 * in our domain. Therefore _only_ check address within our domain.
	 */
	if (pfn_valid(pfn)) {
		paddr = PFN_PHYS(pfn);
		return paddr >= virt_to_phys(xen_io_tlb_start) &&
		       paddr < virt_to_phys(xen_io_tlb_end);
	}
	return 0;
}

static int max_dma_bits = 32;

static int
xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
{
	int i, rc;
	int dma_bits;
148
	dma_addr_t dma_handle;
149
	phys_addr_t p = virt_to_phys(buf);
150 151 152 153 154 155 156 157 158

	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;

	i = 0;
	do {
		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);

		do {
			rc = xen_create_contiguous_region(
159
				p + (i << IO_TLB_SHIFT),
160
				get_order(slabs << IO_TLB_SHIFT),
161
				dma_bits, &dma_handle);
162 163 164 165 166 167 168 169
		} while (rc && dma_bits++ < max_dma_bits);
		if (rc)
			return rc;

		i += slabs;
	} while (i < nslabs);
	return 0;
}
170 171 172 173 174 175 176
static unsigned long xen_set_nslabs(unsigned long nr_tbl)
{
	if (!nr_tbl) {
		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
	} else
		xen_io_tlb_nslabs = nr_tbl;
177

178 179
	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
}
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
enum xen_swiotlb_err {
	XEN_SWIOTLB_UNKNOWN = 0,
	XEN_SWIOTLB_ENOMEM,
	XEN_SWIOTLB_EFIXUP
};

static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
{
	switch (err) {
	case XEN_SWIOTLB_ENOMEM:
		return "Cannot allocate Xen-SWIOTLB buffer\n";
	case XEN_SWIOTLB_EFIXUP:
		return "Failed to get contiguous memory for DMA from Xen!\n"\
		    "You either: don't have the permissions, do not have"\
		    " enough free memory under 4GB, or the hypervisor memory"\
		    " is too fragmented!";
	default:
		break;
	}
	return "";
}
202
int __ref xen_swiotlb_init(int verbose, bool early)
203
{
204
	unsigned long bytes, order;
205
	int rc = -ENOMEM;
206
	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
207
	unsigned int repeat = 3;
208

209
	xen_io_tlb_nslabs = swiotlb_nr_tbl();
210
retry:
211
	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
212
	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
213 214 215
	/*
	 * Get IO TLB memory from any location.
	 */
216 217 218 219 220 221 222 223 224 225 226 227
	if (early)
		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
	else {
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
			xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
			if (xen_io_tlb_start)
				break;
			order--;
		}
		if (order != get_order(bytes)) {
228 229
			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
				(PAGE_SIZE << order) >> 20);
230 231 232 233
			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
		}
	}
234
	if (!xen_io_tlb_start) {
235
		m_ret = XEN_SWIOTLB_ENOMEM;
236 237
		goto error;
	}
238 239 240 241 242 243 244
	xen_io_tlb_end = xen_io_tlb_start + bytes;
	/*
	 * And replace that memory with pages under 4GB.
	 */
	rc = xen_swiotlb_fixup(xen_io_tlb_start,
			       bytes,
			       xen_io_tlb_nslabs);
245
	if (rc) {
246 247 248 249 250 251
		if (early)
			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
		else {
			free_pages((unsigned long)xen_io_tlb_start, order);
			xen_io_tlb_start = NULL;
		}
252
		m_ret = XEN_SWIOTLB_EFIXUP;
253
		goto error;
254
	}
255
	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
256
	if (early) {
257 258 259
		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
			 verbose))
			panic("Cannot allocate SWIOTLB buffer");
260 261
		rc = 0;
	} else
262 263
		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
	return rc;
264
error:
265 266 267
	if (repeat--) {
		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
					(xen_io_tlb_nslabs >> 1));
268 269
		pr_info("Lowering to %luMB\n",
			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
270 271
		goto retry;
	}
272
	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
273 274 275 276 277
	if (early)
		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
	else
		free_pages((unsigned long)xen_io_tlb_start, order);
	return rc;
278 279 280
}
void *
xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
281 282
			   dma_addr_t *dma_handle, gfp_t flags,
			   struct dma_attrs *attrs)
283 284 285 286
{
	void *ret;
	int order = get_order(size);
	u64 dma_mask = DMA_BIT_MASK(32);
287 288
	phys_addr_t phys;
	dma_addr_t dev_addr;
289 290 291 292 293 294 295 296 297 298 299 300

	/*
	* Ignore region specifiers - the kernel's ideas of
	* pseudo-phys memory layout has nothing to do with the
	* machine physical layout.  We can't allocate highmem
	* because we can't return a pointer to it.
	*/
	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);

	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
		return ret;

301 302 303 304 305 306
	/* On ARM this function returns an ioremap'ped virtual address for
	 * which virt_to_phys doesn't return the corresponding physical
	 * address. In fact on ARM virt_to_phys only works for kernel direct
	 * mapped RAM memory. Also see comment below.
	 */
	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
307

308 309 310
	if (!ret)
		return ret;

311
	if (hwdev && hwdev->coherent_dma_mask)
312
		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
313

314 315 316 317 318
	/* At this point dma_handle is the physical address, next we are
	 * going to set it to the machine address.
	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
	 * to *dma_handle. */
	phys = *dma_handle;
319 320 321 322 323
	dev_addr = xen_phys_to_bus(phys);
	if (((dev_addr + size - 1 <= dma_mask)) &&
	    !range_straddles_page_boundary(phys, size))
		*dma_handle = dev_addr;
	else {
324
		if (xen_create_contiguous_region(phys, order,
325
						 fls64(dma_mask), dma_handle) != 0) {
326
			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
327 328 329
			return NULL;
		}
	}
330
	memset(ret, 0, size);
331 332 333 334 335 336
	return ret;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);

void
xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
337
			  dma_addr_t dev_addr, struct dma_attrs *attrs)
338 339
{
	int order = get_order(size);
340 341
	phys_addr_t phys;
	u64 dma_mask = DMA_BIT_MASK(32);
342 343 344 345

	if (dma_release_from_coherent(hwdev, order, vaddr))
		return;

346 347 348
	if (hwdev && hwdev->coherent_dma_mask)
		dma_mask = hwdev->coherent_dma_mask;

349 350 351
	/* do not use virt_to_phys because on ARM it doesn't return you the
	 * physical address */
	phys = xen_bus_to_phys(dev_addr);
352 353 354

	if (((dev_addr + size - 1 > dma_mask)) ||
	    range_straddles_page_boundary(phys, size))
355
		xen_destroy_contiguous_region(phys, order);
356

357
	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
}
EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);


/*
 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 * physical address to use is returned.
 *
 * Once the device is given the dma address, the device owns this memory until
 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 */
dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
				unsigned long offset, size_t size,
				enum dma_data_direction dir,
				struct dma_attrs *attrs)
{
374
	phys_addr_t map, phys = page_to_phys(page) + offset;
375 376 377 378 379 380 381 382 383
	dma_addr_t dev_addr = xen_phys_to_bus(phys);

	BUG_ON(dir == DMA_NONE);
	/*
	 * If the address happens to be in the device's DMA window,
	 * we can safely return the device addr and not worry about bounce
	 * buffering it.
	 */
	if (dma_capable(dev, dev_addr, size) &&
384 385 386 387 388
	    !range_straddles_page_boundary(phys, size) && !swiotlb_force) {
		/* we are not interested in the dma_addr returned by
		 * xen_dma_map_page, only in the potential cache flushes executed
		 * by the function. */
		xen_dma_map_page(dev, page, offset, size, dir, attrs);
389
		return dev_addr;
390
	}
391 392 393 394

	/*
	 * Oh well, have to allocate and map a bounce buffer.
	 */
395 396
	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);

397
	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
398
	if (map == SWIOTLB_MAP_ERROR)
399 400
		return DMA_ERROR_CODE;

401 402
	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
					map & ~PAGE_MASK, size, dir, attrs);
403
	dev_addr = xen_phys_to_bus(map);
404 405 406 407

	/*
	 * Ensure that the address returned is DMA'ble
	 */
408
	if (!dma_capable(dev, dev_addr, size)) {
409
		swiotlb_tbl_unmap_single(dev, map, size, dir);
410 411
		dev_addr = 0;
	}
412 413 414 415 416 417 418 419 420 421 422 423 424
	return dev_addr;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);

/*
 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 * match what was provided for in a previous xen_swiotlb_map_page call.  All
 * other usages are undefined.
 *
 * After this call, reads by the cpu to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
425 426
			     size_t size, enum dma_data_direction dir,
				 struct dma_attrs *attrs)
427 428 429 430 431
{
	phys_addr_t paddr = xen_bus_to_phys(dev_addr);

	BUG_ON(dir == DMA_NONE);

432 433
	xen_dma_unmap_page(hwdev, paddr, size, dir, attrs);

434 435
	/* NOTE: We use dev_addr here, not paddr! */
	if (is_xen_swiotlb_buffer(dev_addr)) {
436
		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
		return;
	}

	if (dir != DMA_FROM_DEVICE)
		return;

	/*
	 * phys_to_virt doesn't work with hihgmem page but we could
	 * call dma_mark_clean() with hihgmem page here. However, we
	 * are fine since dma_mark_clean() is null on POWERPC. We can
	 * make dma_mark_clean() take a physical address if necessary.
	 */
	dma_mark_clean(phys_to_virt(paddr), size);
}

void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
			    size_t size, enum dma_data_direction dir,
			    struct dma_attrs *attrs)
{
456
	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
}
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);

/*
 * Make physical memory consistent for a single streaming mode DMA translation
 * after a transfer.
 *
 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
 * using the cpu, yet do not wish to teardown the dma mapping, you must
 * call this function before doing so.  At the next point you give the dma
 * address back to the card, you must first perform a
 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
 */
static void
xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
			size_t size, enum dma_data_direction dir,
			enum dma_sync_target target)
{
	phys_addr_t paddr = xen_bus_to_phys(dev_addr);

	BUG_ON(dir == DMA_NONE);

479 480 481
	if (target == SYNC_FOR_CPU)
		xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);

482
	/* NOTE: We use dev_addr here, not paddr! */
483
	if (is_xen_swiotlb_buffer(dev_addr))
484
		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
485 486 487

	if (target == SYNC_FOR_DEVICE)
		xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

	if (dir != DMA_FROM_DEVICE)
		return;

	dma_mark_clean(phys_to_virt(paddr), size);
}

void
xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
				size_t size, enum dma_data_direction dir)
{
	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);

void
xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
				   size_t size, enum dma_data_direction dir)
{
	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);

/*
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the above xen_swiotlb_map_page
 * interface.  Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}(SG).
 *
 * NOTE: An implementation may be able to use a smaller number of
 *       DMA address/length pairs than there are SG table elements.
 *       (for example via virtual mapping capabilities)
 *       The routine returns the number of addr/length pairs actually
 *       used, at most nents.
 *
 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
 * same here.
 */
int
xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
			 int nelems, enum dma_data_direction dir,
			 struct dma_attrs *attrs)
{
	struct scatterlist *sg;
	int i;

	BUG_ON(dir == DMA_NONE);

	for_each_sg(sgl, sg, nelems, i) {
		phys_addr_t paddr = sg_phys(sg);
		dma_addr_t dev_addr = xen_phys_to_bus(paddr);

		if (swiotlb_force ||
		    !dma_capable(hwdev, dev_addr, sg->length) ||
		    range_straddles_page_boundary(paddr, sg->length)) {
544 545 546 547 548 549
			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
								 start_dma_addr,
								 sg_phys(sg),
								 sg->length,
								 dir);
			if (map == SWIOTLB_MAP_ERROR) {
550
				dev_warn(hwdev, "swiotlb buffer is full\n");
551 552 553 554
				/* Don't panic here, we expect map_sg users
				   to do proper error handling. */
				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
							   attrs);
555
				sg_dma_len(sgl) = 0;
556
				return 0;
557
			}
558 559 560 561 562
			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
						map & ~PAGE_MASK,
						sg->length,
						dir,
						attrs);
563
			sg->dma_address = xen_phys_to_bus(map);
564 565 566 567 568 569 570 571 572
		} else {
			/* we are not interested in the dma_addr returned by
			 * xen_dma_map_page, only in the potential cache flushes executed
			 * by the function. */
			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
						paddr & ~PAGE_MASK,
						sg->length,
						dir,
						attrs);
573
			sg->dma_address = dev_addr;
574
		}
575
		sg_dma_len(sg) = sg->length;
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	}
	return nelems;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);

/*
 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 * concerning calls here are the same as for swiotlb_unmap_page() above.
 */
void
xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
			   int nelems, enum dma_data_direction dir,
			   struct dma_attrs *attrs)
{
	struct scatterlist *sg;
	int i;

	BUG_ON(dir == DMA_NONE);

	for_each_sg(sgl, sg, nelems, i)
596
		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

}
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);

/*
 * Make physical memory consistent for a set of streaming mode DMA translations
 * after a transfer.
 *
 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 * and usage.
 */
static void
xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
		    int nelems, enum dma_data_direction dir,
		    enum dma_sync_target target)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sgl, sg, nelems, i)
		xen_swiotlb_sync_single(hwdev, sg->dma_address,
618
					sg_dma_len(sg), dir, target);
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
}

void
xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
			    int nelems, enum dma_data_direction dir)
{
	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);

void
xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
			       int nelems, enum dma_data_direction dir)
{
	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);

int
xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
{
	return !dma_addr;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);

/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask to
 * this function.
 */
int
xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
{
	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
656 657 658 659 660 661 662 663 664 665 666 667

int
xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
{
	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);