swiotlb-xen.c 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 *  Copyright 2010
 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
 *
 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License v2.0 as published by
 * the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * PV guests under Xen are running in an non-contiguous memory architecture.
 *
 * When PCI pass-through is utilized, this necessitates an IOMMU for
 * translating bus (DMA) to virtual and vice-versa and also providing a
 * mechanism to have contiguous pages for device drivers operations (say DMA
 * operations).
 *
 * Specifically, under Xen the Linux idea of pages is an illusion. It
 * assumes that pages start at zero and go up to the available memory. To
 * help with that, the Linux Xen MMU provides a lookup mechanism to
 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 * memory is not contiguous. Xen hypervisor stitches memory for guests
 * from different pools, which means there is no guarantee that PFN==MFN
 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 * allocated in descending order (high to low), meaning the guest might
 * never get any MFN's under the 4GB mark.
 *
 */

36 37
#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt

38 39
#include <linux/bootmem.h>
#include <linux/dma-mapping.h>
40
#include <linux/export.h>
41 42 43
#include <xen/swiotlb-xen.h>
#include <xen/page.h>
#include <xen/xen-ops.h>
44
#include <xen/hvc-console.h>
45

46
#include <asm/dma-mapping.h>
47
#include <asm/xen/page-coherent.h>
48

49
#include <trace/events/swiotlb.h>
50 51 52 53 54 55
/*
 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 * API.
 */

56 57 58 59 60 61 62 63 64 65 66 67 68 69
#ifndef CONFIG_X86
static unsigned long dma_alloc_coherent_mask(struct device *dev,
					    gfp_t gfp)
{
	unsigned long dma_mask = 0;

	dma_mask = dev->coherent_dma_mask;
	if (!dma_mask)
		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);

	return dma_mask;
}
#endif

70 71 72 73 74 75
static char *xen_io_tlb_start, *xen_io_tlb_end;
static unsigned long xen_io_tlb_nslabs;
/*
 * Quick lookup value of the bus address of the IOTLB.
 */

76
static u64 start_dma_addr;
77

78
/*
79
 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
80 81 82
 * can be 32bit when dma_addr_t is 64bit leading to a loss in
 * information if the shift is done before casting to 64bit.
 */
83
static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
84
{
85 86
	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
87

88
	dma |= paddr & ~XEN_PAGE_MASK;
89 90

	return dma;
91 92
}

93
static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
94
{
95 96
	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
97 98
	phys_addr_t paddr = dma;

99
	paddr |= baddr & ~XEN_PAGE_MASK;
100 101

	return paddr;
102 103
}

104
static inline dma_addr_t xen_virt_to_bus(void *address)
105 106 107 108
{
	return xen_phys_to_bus(virt_to_phys(address));
}

109
static int check_pages_physically_contiguous(unsigned long xen_pfn,
110 111 112
					     unsigned int offset,
					     size_t length)
{
113
	unsigned long next_bfn;
114 115 116
	int i;
	int nr_pages;

117 118
	next_bfn = pfn_to_bfn(xen_pfn);
	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
119 120

	for (i = 1; i < nr_pages; i++) {
121
		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
122 123 124 125 126
			return 0;
	}
	return 1;
}

127
static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
128
{
129 130
	unsigned long xen_pfn = XEN_PFN_DOWN(p);
	unsigned int offset = p & ~XEN_PAGE_MASK;
131

132
	if (offset + size <= XEN_PAGE_SIZE)
133
		return 0;
134
	if (check_pages_physically_contiguous(xen_pfn, offset, size))
135 136 137 138 139 140
		return 0;
	return 1;
}

static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
{
141 142 143
	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
144 145 146 147 148

	/* If the address is outside our domain, it CAN
	 * have the same virtual address as another address
	 * in our domain. Therefore _only_ check address within our domain.
	 */
149
	if (pfn_valid(PFN_DOWN(paddr))) {
150 151 152 153 154 155 156 157 158 159 160 161 162
		return paddr >= virt_to_phys(xen_io_tlb_start) &&
		       paddr < virt_to_phys(xen_io_tlb_end);
	}
	return 0;
}

static int max_dma_bits = 32;

static int
xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
{
	int i, rc;
	int dma_bits;
163
	dma_addr_t dma_handle;
164
	phys_addr_t p = virt_to_phys(buf);
165 166 167 168 169 170 171 172 173

	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;

	i = 0;
	do {
		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);

		do {
			rc = xen_create_contiguous_region(
174
				p + (i << IO_TLB_SHIFT),
175
				get_order(slabs << IO_TLB_SHIFT),
176
				dma_bits, &dma_handle);
177 178 179 180 181 182 183 184
		} while (rc && dma_bits++ < max_dma_bits);
		if (rc)
			return rc;

		i += slabs;
	} while (i < nslabs);
	return 0;
}
185 186 187 188 189 190 191
static unsigned long xen_set_nslabs(unsigned long nr_tbl)
{
	if (!nr_tbl) {
		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
	} else
		xen_io_tlb_nslabs = nr_tbl;
192

193 194
	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
}
195

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
enum xen_swiotlb_err {
	XEN_SWIOTLB_UNKNOWN = 0,
	XEN_SWIOTLB_ENOMEM,
	XEN_SWIOTLB_EFIXUP
};

static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
{
	switch (err) {
	case XEN_SWIOTLB_ENOMEM:
		return "Cannot allocate Xen-SWIOTLB buffer\n";
	case XEN_SWIOTLB_EFIXUP:
		return "Failed to get contiguous memory for DMA from Xen!\n"\
		    "You either: don't have the permissions, do not have"\
		    " enough free memory under 4GB, or the hypervisor memory"\
		    " is too fragmented!";
	default:
		break;
	}
	return "";
}
217
int __ref xen_swiotlb_init(int verbose, bool early)
218
{
219
	unsigned long bytes, order;
220
	int rc = -ENOMEM;
221
	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
222
	unsigned int repeat = 3;
223

224
	xen_io_tlb_nslabs = swiotlb_nr_tbl();
225
retry:
226
	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
227
	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
228 229 230
	/*
	 * Get IO TLB memory from any location.
	 */
231 232 233 234 235 236
	if (early)
		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
	else {
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
237
			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
238 239 240 241 242
			if (xen_io_tlb_start)
				break;
			order--;
		}
		if (order != get_order(bytes)) {
243 244
			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
				(PAGE_SIZE << order) >> 20);
245 246 247 248
			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
		}
	}
249
	if (!xen_io_tlb_start) {
250
		m_ret = XEN_SWIOTLB_ENOMEM;
251 252
		goto error;
	}
253 254 255 256 257 258 259
	xen_io_tlb_end = xen_io_tlb_start + bytes;
	/*
	 * And replace that memory with pages under 4GB.
	 */
	rc = xen_swiotlb_fixup(xen_io_tlb_start,
			       bytes,
			       xen_io_tlb_nslabs);
260
	if (rc) {
261 262 263 264 265 266
		if (early)
			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
		else {
			free_pages((unsigned long)xen_io_tlb_start, order);
			xen_io_tlb_start = NULL;
		}
267
		m_ret = XEN_SWIOTLB_EFIXUP;
268
		goto error;
269
	}
270
	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
271
	if (early) {
272 273 274
		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
			 verbose))
			panic("Cannot allocate SWIOTLB buffer");
275 276
		rc = 0;
	} else
277 278
		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
	return rc;
279
error:
280 281 282
	if (repeat--) {
		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
					(xen_io_tlb_nslabs >> 1));
283 284
		pr_info("Lowering to %luMB\n",
			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
285 286
		goto retry;
	}
287
	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
288 289 290 291 292
	if (early)
		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
	else
		free_pages((unsigned long)xen_io_tlb_start, order);
	return rc;
293 294 295
}
void *
xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
296
			   dma_addr_t *dma_handle, gfp_t flags,
297
			   unsigned long attrs)
298 299 300 301
{
	void *ret;
	int order = get_order(size);
	u64 dma_mask = DMA_BIT_MASK(32);
302 303
	phys_addr_t phys;
	dma_addr_t dev_addr;
304 305 306 307 308 309 310 311 312

	/*
	* Ignore region specifiers - the kernel's ideas of
	* pseudo-phys memory layout has nothing to do with the
	* machine physical layout.  We can't allocate highmem
	* because we can't return a pointer to it.
	*/
	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);

313 314 315 316 317 318
	/* On ARM this function returns an ioremap'ped virtual address for
	 * which virt_to_phys doesn't return the corresponding physical
	 * address. In fact on ARM virt_to_phys only works for kernel direct
	 * mapped RAM memory. Also see comment below.
	 */
	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
319

320 321 322
	if (!ret)
		return ret;

323
	if (hwdev && hwdev->coherent_dma_mask)
324
		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
325

326 327 328 329 330
	/* At this point dma_handle is the physical address, next we are
	 * going to set it to the machine address.
	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
	 * to *dma_handle. */
	phys = *dma_handle;
331 332 333 334 335
	dev_addr = xen_phys_to_bus(phys);
	if (((dev_addr + size - 1 <= dma_mask)) &&
	    !range_straddles_page_boundary(phys, size))
		*dma_handle = dev_addr;
	else {
336
		if (xen_create_contiguous_region(phys, order,
337
						 fls64(dma_mask), dma_handle) != 0) {
338
			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
339 340 341
			return NULL;
		}
	}
342
	memset(ret, 0, size);
343 344 345 346 347 348
	return ret;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);

void
xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
349
			  dma_addr_t dev_addr, unsigned long attrs)
350 351
{
	int order = get_order(size);
352 353
	phys_addr_t phys;
	u64 dma_mask = DMA_BIT_MASK(32);
354

355 356 357
	if (hwdev && hwdev->coherent_dma_mask)
		dma_mask = hwdev->coherent_dma_mask;

358 359 360
	/* do not use virt_to_phys because on ARM it doesn't return you the
	 * physical address */
	phys = xen_bus_to_phys(dev_addr);
361 362 363

	if (((dev_addr + size - 1 > dma_mask)) ||
	    range_straddles_page_boundary(phys, size))
364
		xen_destroy_contiguous_region(phys, order);
365

366
	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
367 368 369 370 371 372 373 374 375 376 377 378 379 380
}
EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);


/*
 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 * physical address to use is returned.
 *
 * Once the device is given the dma address, the device owns this memory until
 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 */
dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
				unsigned long offset, size_t size,
				enum dma_data_direction dir,
381
				unsigned long attrs)
382
{
383
	phys_addr_t map, phys = page_to_phys(page) + offset;
384 385 386 387 388 389 390 391 392
	dma_addr_t dev_addr = xen_phys_to_bus(phys);

	BUG_ON(dir == DMA_NONE);
	/*
	 * If the address happens to be in the device's DMA window,
	 * we can safely return the device addr and not worry about bounce
	 * buffering it.
	 */
	if (dma_capable(dev, dev_addr, size) &&
393
	    !range_straddles_page_boundary(phys, size) &&
394
		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
395
		!swiotlb_force) {
396 397 398
		/* we are not interested in the dma_addr returned by
		 * xen_dma_map_page, only in the potential cache flushes executed
		 * by the function. */
399
		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
400
		return dev_addr;
401
	}
402 403 404 405

	/*
	 * Oh well, have to allocate and map a bounce buffer.
	 */
406 407
	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);

408
	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
409
	if (map == SWIOTLB_MAP_ERROR)
410 411
		return DMA_ERROR_CODE;

412
	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
413
					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
414
	dev_addr = xen_phys_to_bus(map);
415 416 417 418

	/*
	 * Ensure that the address returned is DMA'ble
	 */
419
	if (!dma_capable(dev, dev_addr, size)) {
420
		swiotlb_tbl_unmap_single(dev, map, size, dir);
421 422
		dev_addr = 0;
	}
423 424 425 426 427 428 429 430 431 432 433 434 435
	return dev_addr;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);

/*
 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 * match what was provided for in a previous xen_swiotlb_map_page call.  All
 * other usages are undefined.
 *
 * After this call, reads by the cpu to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
436
			     size_t size, enum dma_data_direction dir,
437
			     unsigned long attrs)
438 439 440 441 442
{
	phys_addr_t paddr = xen_bus_to_phys(dev_addr);

	BUG_ON(dir == DMA_NONE);

443
	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
444

445 446
	/* NOTE: We use dev_addr here, not paddr! */
	if (is_xen_swiotlb_buffer(dev_addr)) {
447
		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
		return;
	}

	if (dir != DMA_FROM_DEVICE)
		return;

	/*
	 * phys_to_virt doesn't work with hihgmem page but we could
	 * call dma_mark_clean() with hihgmem page here. However, we
	 * are fine since dma_mark_clean() is null on POWERPC. We can
	 * make dma_mark_clean() take a physical address if necessary.
	 */
	dma_mark_clean(phys_to_virt(paddr), size);
}

void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
			    size_t size, enum dma_data_direction dir,
465
			    unsigned long attrs)
466
{
467
	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);

/*
 * Make physical memory consistent for a single streaming mode DMA translation
 * after a transfer.
 *
 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
 * using the cpu, yet do not wish to teardown the dma mapping, you must
 * call this function before doing so.  At the next point you give the dma
 * address back to the card, you must first perform a
 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
 */
static void
xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
			size_t size, enum dma_data_direction dir,
			enum dma_sync_target target)
{
	phys_addr_t paddr = xen_bus_to_phys(dev_addr);

	BUG_ON(dir == DMA_NONE);

490
	if (target == SYNC_FOR_CPU)
491
		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
492

493
	/* NOTE: We use dev_addr here, not paddr! */
494
	if (is_xen_swiotlb_buffer(dev_addr))
495
		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
496 497

	if (target == SYNC_FOR_DEVICE)
498
		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

	if (dir != DMA_FROM_DEVICE)
		return;

	dma_mark_clean(phys_to_virt(paddr), size);
}

void
xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
				size_t size, enum dma_data_direction dir)
{
	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);

void
xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
				   size_t size, enum dma_data_direction dir)
{
	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);

/*
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the above xen_swiotlb_map_page
 * interface.  Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}(SG).
 *
 * NOTE: An implementation may be able to use a smaller number of
 *       DMA address/length pairs than there are SG table elements.
 *       (for example via virtual mapping capabilities)
 *       The routine returns the number of addr/length pairs actually
 *       used, at most nents.
 *
 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
 * same here.
 */
int
xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
			 int nelems, enum dma_data_direction dir,
541
			 unsigned long attrs)
542 543 544 545 546 547 548 549 550 551 552
{
	struct scatterlist *sg;
	int i;

	BUG_ON(dir == DMA_NONE);

	for_each_sg(sgl, sg, nelems, i) {
		phys_addr_t paddr = sg_phys(sg);
		dma_addr_t dev_addr = xen_phys_to_bus(paddr);

		if (swiotlb_force ||
553
		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
554 555
		    !dma_capable(hwdev, dev_addr, sg->length) ||
		    range_straddles_page_boundary(paddr, sg->length)) {
556 557 558 559 560 561
			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
								 start_dma_addr,
								 sg_phys(sg),
								 sg->length,
								 dir);
			if (map == SWIOTLB_MAP_ERROR) {
562
				dev_warn(hwdev, "swiotlb buffer is full\n");
563 564 565 566
				/* Don't panic here, we expect map_sg users
				   to do proper error handling. */
				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
							   attrs);
567
				sg_dma_len(sgl) = 0;
568
				return 0;
569
			}
570
			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
571
						dev_addr,
572 573 574 575
						map & ~PAGE_MASK,
						sg->length,
						dir,
						attrs);
576
			sg->dma_address = xen_phys_to_bus(map);
577 578 579 580 581
		} else {
			/* we are not interested in the dma_addr returned by
			 * xen_dma_map_page, only in the potential cache flushes executed
			 * by the function. */
			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
582
						dev_addr,
583 584 585 586
						paddr & ~PAGE_MASK,
						sg->length,
						dir,
						attrs);
587
			sg->dma_address = dev_addr;
588
		}
589
		sg_dma_len(sg) = sg->length;
590 591 592 593 594 595 596 597 598 599 600 601
	}
	return nelems;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);

/*
 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 * concerning calls here are the same as for swiotlb_unmap_page() above.
 */
void
xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
			   int nelems, enum dma_data_direction dir,
602
			   unsigned long attrs)
603 604 605 606 607 608 609
{
	struct scatterlist *sg;
	int i;

	BUG_ON(dir == DMA_NONE);

	for_each_sg(sgl, sg, nelems, i)
610
		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

}
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);

/*
 * Make physical memory consistent for a set of streaming mode DMA translations
 * after a transfer.
 *
 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 * and usage.
 */
static void
xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
		    int nelems, enum dma_data_direction dir,
		    enum dma_sync_target target)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sgl, sg, nelems, i)
		xen_swiotlb_sync_single(hwdev, sg->dma_address,
632
					sg_dma_len(sg), dir, target);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
}

void
xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
			    int nelems, enum dma_data_direction dir)
{
	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);

void
xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
			       int nelems, enum dma_data_direction dir)
{
	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);

int
xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
{
	return !dma_addr;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);

/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask to
 * this function.
 */
int
xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
{
	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
670 671 672 673 674 675 676 677 678 679 680 681

int
xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
{
	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);