Commit dfe86cba authored by Adrian Hunter's avatar Adrian Hunter Committed by Linus Torvalds

mmc: add erase, secure erase, trim and secure trim operations

SD/MMC cards tend to support an erase operation.  In addition, eMMC v4.4
cards can support secure erase, trim and secure trim operations that are
all variants of the basic erase command.

SD/MMC device attributes "erase_size" and "preferred_erase_size" have been
added.

"erase_size" is the minimum size, in bytes, of an erase operation.  For
MMC, "erase_size" is the erase group size reported by the card.  Note that
"erase_size" does not apply to trim or secure trim operations where the
minimum size is always one 512 byte sector.  For SD, "erase_size" is 512
if the card is block-addressed, 0 otherwise.

SD/MMC cards can erase an arbitrarily large area up to and
including the whole card.  When erasing a large area it may
be desirable to do it in smaller chunks for three reasons:

    1. A single erase command will make all other I/O on the card
       wait.  This is not a problem if the whole card is being erased, but
       erasing one partition will make I/O for another partition on the
       same card wait for the duration of the erase - which could be a
       several minutes.

    2. To be able to inform the user of erase progress.

    3. The erase timeout becomes too large to be very useful.
       Because the erase timeout contains a margin which is multiplied by
       the size of the erase area, the value can end up being several
       minutes for large areas.

"erase_size" is not the most efficient unit to erase (especially for SD
where it is just one sector), hence "preferred_erase_size" provides a good
chunk size for erasing large areas.

For MMC, "preferred_erase_size" is the high-capacity erase size if a card
specifies one, otherwise it is based on the capacity of the card.

For SD, "preferred_erase_size" is the allocation unit size specified by
the card.

"preferred_erase_size" is in bytes.
Signed-off-by: default avatarAdrian Hunter <adrian.hunter@nokia.com>
Acked-by: default avatarJens Axboe <axboe@kernel.dk>
Cc: Kyungmin Park <kmpark@infradead.org>
Cc: Madhusudhan Chikkature <madhu.cr@ti.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ben Gardiner <bengardiner@nanometrics.ca>
Cc: <linux-mmc@vger.kernel.org>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 81d73a32
......@@ -232,6 +232,8 @@ memory.txt
- info on typical Linux memory problems.
mips/
- directory with info about Linux on MIPS architecture.
mmc/
- directory with info about the MMC subsystem
mono.txt
- how to execute Mono-based .NET binaries with the help of BINFMT_MISC.
mutex-design.txt
......
00-INDEX
- this file
mmc-dev-attrs.txt
- info on SD and MMC device attributes
SD and MMC Device Attributes
============================
All attributes are read-only.
cid Card Identifaction Register
csd Card Specific Data Register
scr SD Card Configuration Register (SD only)
date Manufacturing Date (from CID Register)
fwrev Firmware/Product Revision (from CID Register) (SD and MMCv1 only)
hwrev Hardware/Product Revision (from CID Register) (SD and MMCv1 only)
manfid Manufacturer ID (from CID Register)
name Product Name (from CID Register)
oemid OEM/Application ID (from CID Register)
serial Product Serial Number (from CID Register)
erase_size Erase group size
preferred_erase_size Preferred erase size
Note on Erase Size and Preferred Erase Size:
"erase_size" is the minimum size, in bytes, of an erase
operation. For MMC, "erase_size" is the erase group size
reported by the card. Note that "erase_size" does not apply
to trim or secure trim operations where the minimum size is
always one 512 byte sector. For SD, "erase_size" is 512
if the card is block-addressed, 0 otherwise.
SD/MMC cards can erase an arbitrarily large area up to and
including the whole card. When erasing a large area it may
be desirable to do it in smaller chunks for three reasons:
1. A single erase command will make all other I/O on
the card wait. This is not a problem if the whole card
is being erased, but erasing one partition will make
I/O for another partition on the same card wait for the
duration of the erase - which could be a several
minutes.
2. To be able to inform the user of erase progress.
3. The erase timeout becomes too large to be very
useful. Because the erase timeout contains a margin
which is multiplied by the size of the erase area,
the value can end up being several minutes for large
areas.
"erase_size" is not the most efficient unit to erase
(especially for SD where it is just one sector),
hence "preferred_erase_size" provides a good chunk
size for erasing large areas.
For MMC, "preferred_erase_size" is the high-capacity
erase size if a card specifies one, otherwise it is
based on the capacity of the card.
For SD, "preferred_erase_size" is the allocation unit
size specified by the card.
"preferred_erase_size" is in bytes.
......@@ -1050,6 +1050,352 @@ void mmc_detect_change(struct mmc_host *host, unsigned long delay)
EXPORT_SYMBOL(mmc_detect_change);
void mmc_init_erase(struct mmc_card *card)
{
unsigned int sz;
if (is_power_of_2(card->erase_size))
card->erase_shift = ffs(card->erase_size) - 1;
else
card->erase_shift = 0;
/*
* It is possible to erase an arbitrarily large area of an SD or MMC
* card. That is not desirable because it can take a long time
* (minutes) potentially delaying more important I/O, and also the
* timeout calculations become increasingly hugely over-estimated.
* Consequently, 'pref_erase' is defined as a guide to limit erases
* to that size and alignment.
*
* For SD cards that define Allocation Unit size, limit erases to one
* Allocation Unit at a time. For MMC cards that define High Capacity
* Erase Size, whether it is switched on or not, limit to that size.
* Otherwise just have a stab at a good value. For modern cards it
* will end up being 4MiB. Note that if the value is too small, it
* can end up taking longer to erase.
*/
if (mmc_card_sd(card) && card->ssr.au) {
card->pref_erase = card->ssr.au;
card->erase_shift = ffs(card->ssr.au) - 1;
} else if (card->ext_csd.hc_erase_size) {
card->pref_erase = card->ext_csd.hc_erase_size;
} else {
sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
if (sz < 128)
card->pref_erase = 512 * 1024 / 512;
else if (sz < 512)
card->pref_erase = 1024 * 1024 / 512;
else if (sz < 1024)
card->pref_erase = 2 * 1024 * 1024 / 512;
else
card->pref_erase = 4 * 1024 * 1024 / 512;
if (card->pref_erase < card->erase_size)
card->pref_erase = card->erase_size;
else {
sz = card->pref_erase % card->erase_size;
if (sz)
card->pref_erase += card->erase_size - sz;
}
}
}
static void mmc_set_mmc_erase_timeout(struct mmc_card *card,
struct mmc_command *cmd,
unsigned int arg, unsigned int qty)
{
unsigned int erase_timeout;
if (card->ext_csd.erase_group_def & 1) {
/* High Capacity Erase Group Size uses HC timeouts */
if (arg == MMC_TRIM_ARG)
erase_timeout = card->ext_csd.trim_timeout;
else
erase_timeout = card->ext_csd.hc_erase_timeout;
} else {
/* CSD Erase Group Size uses write timeout */
unsigned int mult = (10 << card->csd.r2w_factor);
unsigned int timeout_clks = card->csd.tacc_clks * mult;
unsigned int timeout_us;
/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
if (card->csd.tacc_ns < 1000000)
timeout_us = (card->csd.tacc_ns * mult) / 1000;
else
timeout_us = (card->csd.tacc_ns / 1000) * mult;
/*
* ios.clock is only a target. The real clock rate might be
* less but not that much less, so fudge it by multiplying by 2.
*/
timeout_clks <<= 1;
timeout_us += (timeout_clks * 1000) /
(card->host->ios.clock / 1000);
erase_timeout = timeout_us / 1000;
/*
* Theoretically, the calculation could underflow so round up
* to 1ms in that case.
*/
if (!erase_timeout)
erase_timeout = 1;
}
/* Multiplier for secure operations */
if (arg & MMC_SECURE_ARGS) {
if (arg == MMC_SECURE_ERASE_ARG)
erase_timeout *= card->ext_csd.sec_erase_mult;
else
erase_timeout *= card->ext_csd.sec_trim_mult;
}
erase_timeout *= qty;
/*
* Ensure at least a 1 second timeout for SPI as per
* 'mmc_set_data_timeout()'
*/
if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
erase_timeout = 1000;
cmd->erase_timeout = erase_timeout;
}
static void mmc_set_sd_erase_timeout(struct mmc_card *card,
struct mmc_command *cmd, unsigned int arg,
unsigned int qty)
{
if (card->ssr.erase_timeout) {
/* Erase timeout specified in SD Status Register (SSR) */
cmd->erase_timeout = card->ssr.erase_timeout * qty +
card->ssr.erase_offset;
} else {
/*
* Erase timeout not specified in SD Status Register (SSR) so
* use 250ms per write block.
*/
cmd->erase_timeout = 250 * qty;
}
/* Must not be less than 1 second */
if (cmd->erase_timeout < 1000)
cmd->erase_timeout = 1000;
}
static void mmc_set_erase_timeout(struct mmc_card *card,
struct mmc_command *cmd, unsigned int arg,
unsigned int qty)
{
if (mmc_card_sd(card))
mmc_set_sd_erase_timeout(card, cmd, arg, qty);
else
mmc_set_mmc_erase_timeout(card, cmd, arg, qty);
}
static int mmc_do_erase(struct mmc_card *card, unsigned int from,
unsigned int to, unsigned int arg)
{
struct mmc_command cmd;
unsigned int qty = 0;
int err;
/*
* qty is used to calculate the erase timeout which depends on how many
* erase groups (or allocation units in SD terminology) are affected.
* We count erasing part of an erase group as one erase group.
* For SD, the allocation units are always a power of 2. For MMC, the
* erase group size is almost certainly also power of 2, but it does not
* seem to insist on that in the JEDEC standard, so we fall back to
* division in that case. SD may not specify an allocation unit size,
* in which case the timeout is based on the number of write blocks.
*
* Note that the timeout for secure trim 2 will only be correct if the
* number of erase groups specified is the same as the total of all
* preceding secure trim 1 commands. Since the power may have been
* lost since the secure trim 1 commands occurred, it is generally
* impossible to calculate the secure trim 2 timeout correctly.
*/
if (card->erase_shift)
qty += ((to >> card->erase_shift) -
(from >> card->erase_shift)) + 1;
else if (mmc_card_sd(card))
qty += to - from + 1;
else
qty += ((to / card->erase_size) -
(from / card->erase_size)) + 1;
if (!mmc_card_blockaddr(card)) {
from <<= 9;
to <<= 9;
}
memset(&cmd, 0, sizeof(struct mmc_command));
if (mmc_card_sd(card))
cmd.opcode = SD_ERASE_WR_BLK_START;
else
cmd.opcode = MMC_ERASE_GROUP_START;
cmd.arg = from;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
printk(KERN_ERR "mmc_erase: group start error %d, "
"status %#x\n", err, cmd.resp[0]);
err = -EINVAL;
goto out;
}
memset(&cmd, 0, sizeof(struct mmc_command));
if (mmc_card_sd(card))
cmd.opcode = SD_ERASE_WR_BLK_END;
else
cmd.opcode = MMC_ERASE_GROUP_END;
cmd.arg = to;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
err, cmd.resp[0]);
err = -EINVAL;
goto out;
}
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_ERASE;
cmd.arg = arg;
cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
mmc_set_erase_timeout(card, &cmd, arg, qty);
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
err, cmd.resp[0]);
err = -EIO;
goto out;
}
if (mmc_host_is_spi(card->host))
goto out;
do {
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_SEND_STATUS;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
/* Do not retry else we can't see errors */
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err || (cmd.resp[0] & 0xFDF92000)) {
printk(KERN_ERR "error %d requesting status %#x\n",
err, cmd.resp[0]);
err = -EIO;
goto out;
}
} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
R1_CURRENT_STATE(cmd.resp[0]) == 7);
out:
return err;
}
/**
* mmc_erase - erase sectors.
* @card: card to erase
* @from: first sector to erase
* @nr: number of sectors to erase
* @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
*
* Caller must claim host before calling this function.
*/
int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
unsigned int arg)
{
unsigned int rem, to = from + nr;
if (!(card->host->caps & MMC_CAP_ERASE) ||
!(card->csd.cmdclass & CCC_ERASE))
return -EOPNOTSUPP;
if (!card->erase_size)
return -EOPNOTSUPP;
if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
return -EOPNOTSUPP;
if ((arg & MMC_SECURE_ARGS) &&
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
return -EOPNOTSUPP;
if ((arg & MMC_TRIM_ARGS) &&
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
return -EOPNOTSUPP;
if (arg == MMC_SECURE_ERASE_ARG) {
if (from % card->erase_size || nr % card->erase_size)
return -EINVAL;
}
if (arg == MMC_ERASE_ARG) {
rem = from % card->erase_size;
if (rem) {
rem = card->erase_size - rem;
from += rem;
if (nr > rem)
nr -= rem;
else
return 0;
}
rem = nr % card->erase_size;
if (rem)
nr -= rem;
}
if (nr == 0)
return 0;
to = from + nr;
if (to <= from)
return -EINVAL;
/* 'from' and 'to' are inclusive */
to -= 1;
return mmc_do_erase(card, from, to, arg);
}
EXPORT_SYMBOL(mmc_erase);
int mmc_can_erase(struct mmc_card *card)
{
if ((card->host->caps & MMC_CAP_ERASE) &&
(card->csd.cmdclass & CCC_ERASE) && card->erase_size)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_erase);
int mmc_can_trim(struct mmc_card *card)
{
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_trim);
int mmc_can_secure_erase_trim(struct mmc_card *card)
{
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_secure_erase_trim);
int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
unsigned int nr)
{
if (!card->erase_size)
return 0;
if (from % card->erase_size || nr % card->erase_size)
return 0;
return 1;
}
EXPORT_SYMBOL(mmc_erase_group_aligned);
void mmc_rescan(struct work_struct *work)
{
......
......@@ -29,6 +29,8 @@ struct mmc_bus_ops {
void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops);
void mmc_detach_bus(struct mmc_host *host);
void mmc_init_erase(struct mmc_card *card);
void mmc_set_chip_select(struct mmc_host *host, int mode);
void mmc_set_clock(struct mmc_host *host, unsigned int hz);
void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode);
......
......@@ -108,13 +108,23 @@ static int mmc_decode_cid(struct mmc_card *card)
return 0;
}
static void mmc_set_erase_size(struct mmc_card *card)
{
if (card->ext_csd.erase_group_def & 1)
card->erase_size = card->ext_csd.hc_erase_size;
else
card->erase_size = card->csd.erase_size;
mmc_init_erase(card);
}
/*
* Given a 128-bit response, decode to our card CSD structure.
*/
static int mmc_decode_csd(struct mmc_card *card)
{
struct mmc_csd *csd = &card->csd;
unsigned int e, m;
unsigned int e, m, a, b;
u32 *resp = card->raw_csd;
/*
......@@ -152,6 +162,13 @@ static int mmc_decode_csd(struct mmc_card *card)
csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
if (csd->write_blkbits >= 9) {
a = UNSTUFF_BITS(resp, 42, 5);
b = UNSTUFF_BITS(resp, 37, 5);
csd->erase_size = (a + 1) * (b + 1);
csd->erase_size <<= csd->write_blkbits - 9;
}
return 0;
}
......@@ -261,8 +278,30 @@ static int mmc_read_ext_csd(struct mmc_card *card)
if (sa_shift > 0 && sa_shift <= 0x17)
card->ext_csd.sa_timeout =
1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
card->ext_csd.erase_group_def =
ext_csd[EXT_CSD_ERASE_GROUP_DEF];
card->ext_csd.hc_erase_timeout = 300 *
ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
card->ext_csd.hc_erase_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
}
if (card->ext_csd.rev >= 4) {
card->ext_csd.sec_trim_mult =
ext_csd[EXT_CSD_SEC_TRIM_MULT];
card->ext_csd.sec_erase_mult =
ext_csd[EXT_CSD_SEC_ERASE_MULT];
card->ext_csd.sec_feature_support =
ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
card->ext_csd.trim_timeout = 300 *
ext_csd[EXT_CSD_TRIM_MULT];
}
if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
card->erased_byte = 0xFF;
else
card->erased_byte = 0x0;
out:
kfree(ext_csd);
......@@ -274,6 +313,8 @@ MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
card->raw_csd[2], card->raw_csd[3]);
MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
......@@ -285,6 +326,8 @@ static struct attribute *mmc_std_attrs[] = {
&dev_attr_cid.attr,
&dev_attr_csd.attr,
&dev_attr_date.attr,
&dev_attr_erase_size.attr,
&dev_attr_preferred_erase_size.attr,
&dev_attr_fwrev.attr,
&dev_attr_hwrev.attr,
&dev_attr_manfid.attr,
......@@ -421,6 +464,8 @@ static int mmc_init_card(struct mmc_host *host, u32 ocr,
err = mmc_read_ext_csd(card);
if (err)
goto free_card;
/* Erase size depends on CSD and Extended CSD */
mmc_set_erase_size(card);
}
/*
......
......@@ -119,6 +119,13 @@ static int mmc_decode_csd(struct mmc_card *card)
csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
if (UNSTUFF_BITS(resp, 46, 1)) {
csd->erase_size = 1;
} else if (csd->write_blkbits >= 9) {
csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
csd->erase_size <<= csd->write_blkbits - 9;
}
break;
case 1:
/*
......@@ -147,6 +154,7 @@ static int mmc_decode_csd(struct mmc_card *card)
csd->r2w_factor = 4; /* Unused */
csd->write_blkbits = 9;
csd->write_partial = 0;
csd->erase_size = 1;
break;
default:
printk(KERN_ERR "%s: unrecognised CSD structure version %d\n",
......@@ -154,6 +162,8 @@ static int mmc_decode_csd(struct mmc_card *card)
return -EINVAL;
}
card->erase_size = csd->erase_size;
return 0;
}
......@@ -179,9 +189,67 @@ static int mmc_decode_scr(struct mmc_card *card)
scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
if (UNSTUFF_BITS(resp, 55, 1))
card->erased_byte = 0xFF;
else
card->erased_byte = 0x0;
return 0;
}
/*
* Fetch and process SD Status register.
*/
static int mmc_read_ssr(struct mmc_card *card)
{
unsigned int au, es, et, eo;
int err, i;
u32 *ssr;
if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
printk(KERN_WARNING "%s: card lacks mandatory SD Status "
"function.\n", mmc_hostname(card->host));
return 0;
}
ssr = kmalloc(64, GFP_KERNEL);
if (!ssr)
return -ENOMEM;
err = mmc_app_sd_status(card, ssr);
if (err) {
printk(KERN_WARNING "%s: problem reading SD Status "
"register.\n", mmc_hostname(card->host));
err = 0;
goto out;
}
for (i = 0; i < 16; i++)
ssr[i] = be32_to_cpu(ssr[i]);
/*
* UNSTUFF_BITS only works with four u32s so we have to offset the
* bitfield positions accordingly.
*/
au = UNSTUFF_BITS(ssr, 428 - 384, 4);
if (au > 0 || au <= 9) {
card->ssr.au = 1 << (au + 4);
es = UNSTUFF_BITS(ssr, 408 - 384, 16);
et = UNSTUFF_BITS(ssr, 402 - 384, 6);
eo = UNSTUFF_BITS(ssr, 400 - 384, 2);
if (es && et) {
card->ssr.erase_timeout = (et * 1000) / es;
card->ssr.erase_offset = eo * 1000;
}
} else {
printk(KERN_WARNING "%s: SD Status: Invalid Allocation Unit "
"size.\n", mmc_hostname(card->host));
}
out:
kfree(ssr);
return err;
}
/*
* Fetches and decodes switch information
*/
......@@ -289,6 +357,8 @@ MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
card->raw_csd[2], card->raw_csd[3]);
MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
......@@ -302,6 +372,8 @@ static struct attribute *sd_std_attrs[] = {
&dev_attr_csd.attr,