windfarm_pm91.c 18 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * Windfarm PowerMac thermal control. SMU based 1 CPU desktop control loops
 *
 * (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
 *                    <benh@kernel.crashing.org>
 *
 * Released under the term of the GNU GPL v2.
 *
 * The algorithm used is the PID control algorithm, used the same
 * way the published Darwin code does, using the same values that
 * are present in the Darwin 8.2 snapshot property lists (note however
 * that none of the code has been re-used, it's a complete re-implementation
 *
 * The various control loops found in Darwin config file are:
 *
 * PowerMac9,1
 * ===========
 *
 * Has 3 control loops: CPU fans is similar to PowerMac8,1 (though it doesn't
 * try to play with other control loops fans). Drive bay is rather basic PID
 * with one sensor and one fan. Slots area is a bit different as the Darwin
 * driver is supposed to be capable of working in a special "AGP" mode which
 * involves the presence of an AGP sensor and an AGP fan (possibly on the
 * AGP card itself). I can't deal with that special mode as I don't have
 * access to those additional sensor/fans for now (though ultimately, it would
 * be possible to add sensor objects for them) so I'm only implementing the
 * basic PCI slot control loop
 */

#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <linux/kmod.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/io.h>
#include <asm/sections.h>
#include <asm/smu.h>

#include "windfarm.h"
#include "windfarm_pid.h"

#define VERSION "0.4"

#undef DEBUG

#ifdef DEBUG
#define DBG(args...)	printk(args)
#else
#define DBG(args...)	do { } while(0)
#endif

/* define this to force CPU overtemp to 74 degree, useful for testing
 * the overtemp code
 */
#undef HACKED_OVERTEMP

/* Controls & sensors */
static struct wf_sensor	*sensor_cpu_power;
static struct wf_sensor	*sensor_cpu_temp;
static struct wf_sensor	*sensor_hd_temp;
static struct wf_sensor	*sensor_slots_power;
static struct wf_control *fan_cpu_main;
static struct wf_control *fan_cpu_second;
static struct wf_control *fan_cpu_third;
static struct wf_control *fan_hd;
static struct wf_control *fan_slots;
static struct wf_control *cpufreq_clamp;

/* Set to kick the control loop into life */
static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok, wf_smu_started;
79
static bool wf_smu_overtemp;
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

/* Failure handling.. could be nicer */
#define FAILURE_FAN		0x01
#define FAILURE_SENSOR		0x02
#define FAILURE_OVERTEMP	0x04

static unsigned int wf_smu_failure_state;
static int wf_smu_readjust, wf_smu_skipping;

/*
 * ****** CPU Fans Control Loop ******
 *
 */


#define WF_SMU_CPU_FANS_INTERVAL	1
#define WF_SMU_CPU_FANS_MAX_HISTORY	16

/* State data used by the cpu fans control loop
 */
struct wf_smu_cpu_fans_state {
	int			ticks;
	s32			cpu_setpoint;
	struct wf_cpu_pid_state	pid;
};

static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;



/*
 * ****** Drive Fan Control Loop ******
 *
 */

struct wf_smu_drive_fans_state {
	int			ticks;
	s32			setpoint;
	struct wf_pid_state	pid;
};

static struct wf_smu_drive_fans_state *wf_smu_drive_fans;

/*
 * ****** Slots Fan Control Loop ******
 *
 */

struct wf_smu_slots_fans_state {
	int			ticks;
	s32			setpoint;
	struct wf_pid_state	pid;
};

static struct wf_smu_slots_fans_state *wf_smu_slots_fans;

/*
 * ***** Implementation *****
 *
 */


static void wf_smu_create_cpu_fans(void)
{
	struct wf_cpu_pid_param pid_param;
145
	const struct smu_sdbp_header *hdr;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	struct smu_sdbp_cpupiddata *piddata;
	struct smu_sdbp_fvt *fvt;
	s32 tmax, tdelta, maxpow, powadj;

	/* First, locate the PID params in SMU SBD */
	hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
	if (hdr == 0) {
		printk(KERN_WARNING "windfarm: CPU PID fan config not found "
		       "max fan speed\n");
		goto fail;
	}
	piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];

	/* Get the FVT params for operating point 0 (the only supported one
	 * for now) in order to get tmax
	 */
	hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
	if (hdr) {
		fvt = (struct smu_sdbp_fvt *)&hdr[1];
		tmax = ((s32)fvt->maxtemp) << 16;
	} else
		tmax = 0x5e0000; /* 94 degree default */

	/* Alloc & initialize state */
	wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
				  GFP_KERNEL);
	if (wf_smu_cpu_fans == NULL)
		goto fail;
       	wf_smu_cpu_fans->ticks = 1;

	/* Fill PID params */
	pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
	pid_param.history_len = piddata->history_len;
	if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
		printk(KERN_WARNING "windfarm: History size overflow on "
		       "CPU control loop (%d)\n", piddata->history_len);
		pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
	}
	pid_param.gd = piddata->gd;
	pid_param.gp = piddata->gp;
	pid_param.gr = piddata->gr / pid_param.history_len;

	tdelta = ((s32)piddata->target_temp_delta) << 16;
	maxpow = ((s32)piddata->max_power) << 16;
	powadj = ((s32)piddata->power_adj) << 16;

	pid_param.tmax = tmax;
	pid_param.ttarget = tmax - tdelta;
	pid_param.pmaxadj = maxpow - powadj;

196 197
	pid_param.min = wf_control_get_min(fan_cpu_main);
	pid_param.max = wf_control_get_max(fan_cpu_main);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

	wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);

	DBG("wf: CPU Fan control initialized.\n");
	DBG("    ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
	    FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
	    pid_param.min, pid_param.max);

	return;

 fail:
	printk(KERN_WARNING "windfarm: CPU fan config not found\n"
	       "for this machine model, max fan speed\n");

	if (cpufreq_clamp)
		wf_control_set_max(cpufreq_clamp);
	if (fan_cpu_main)
		wf_control_set_max(fan_cpu_main);
}

static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
{
	s32 new_setpoint, temp, power;
	int rc;

	if (--st->ticks != 0) {
		if (wf_smu_readjust)
			goto readjust;
		return;
	}
	st->ticks = WF_SMU_CPU_FANS_INTERVAL;

230
	rc = wf_sensor_get(sensor_cpu_temp, &temp);
231 232 233 234 235 236 237
	if (rc) {
		printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
		       rc);
		wf_smu_failure_state |= FAILURE_SENSOR;
		return;
	}

238
	rc = wf_sensor_get(sensor_cpu_power, &power);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	if (rc) {
		printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
		       rc);
		wf_smu_failure_state |= FAILURE_SENSOR;
		return;
	}

	DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
	    FIX32TOPRINT(temp), FIX32TOPRINT(power));

#ifdef HACKED_OVERTEMP
	if (temp > 0x4a0000)
		wf_smu_failure_state |= FAILURE_OVERTEMP;
#else
	if (temp > st->pid.param.tmax)
		wf_smu_failure_state |= FAILURE_OVERTEMP;
#endif
	new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);

	DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);

	if (st->cpu_setpoint == new_setpoint)
		return;
	st->cpu_setpoint = new_setpoint;
 readjust:
	if (fan_cpu_main && wf_smu_failure_state == 0) {
265
		rc = wf_control_set(fan_cpu_main, st->cpu_setpoint);
266 267 268 269 270 271 272
		if (rc) {
			printk(KERN_WARNING "windfarm: CPU main fan"
			       " error %d\n", rc);
			wf_smu_failure_state |= FAILURE_FAN;
		}
	}
	if (fan_cpu_second && wf_smu_failure_state == 0) {
273
		rc = wf_control_set(fan_cpu_second, st->cpu_setpoint);
274 275 276 277 278 279 280
		if (rc) {
			printk(KERN_WARNING "windfarm: CPU second fan"
			       " error %d\n", rc);
			wf_smu_failure_state |= FAILURE_FAN;
		}
	}
	if (fan_cpu_third && wf_smu_failure_state == 0) {
281
		rc = wf_control_set(fan_cpu_third, st->cpu_setpoint);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		if (rc) {
			printk(KERN_WARNING "windfarm: CPU third fan"
			       " error %d\n", rc);
			wf_smu_failure_state |= FAILURE_FAN;
		}
	}
}

static void wf_smu_create_drive_fans(void)
{
	struct wf_pid_param param = {
		.interval	= 5,
		.history_len	= 2,
		.gd		= 0x01e00000,
		.gp		= 0x00500000,
		.gr		= 0x00000000,
		.itarget	= 0x00200000,
	};

	/* Alloc & initialize state */
	wf_smu_drive_fans = kmalloc(sizeof(struct wf_smu_drive_fans_state),
					GFP_KERNEL);
	if (wf_smu_drive_fans == NULL) {
		printk(KERN_WARNING "windfarm: Memory allocation error"
		       " max fan speed\n");
		goto fail;
	}
       	wf_smu_drive_fans->ticks = 1;

	/* Fill PID params */
	param.additive = (fan_hd->type == WF_CONTROL_RPM_FAN);
313 314
	param.min = wf_control_get_min(fan_hd);
	param.max = wf_control_get_max(fan_hd);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
	wf_pid_init(&wf_smu_drive_fans->pid, &param);

	DBG("wf: Drive Fan control initialized.\n");
	DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
	    FIX32TOPRINT(param.itarget), param.min, param.max);
	return;

 fail:
	if (fan_hd)
		wf_control_set_max(fan_hd);
}

static void wf_smu_drive_fans_tick(struct wf_smu_drive_fans_state *st)
{
	s32 new_setpoint, temp;
	int rc;

	if (--st->ticks != 0) {
		if (wf_smu_readjust)
			goto readjust;
		return;
	}
	st->ticks = st->pid.param.interval;

339
	rc = wf_sensor_get(sensor_hd_temp, &temp);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	if (rc) {
		printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
		       rc);
		wf_smu_failure_state |= FAILURE_SENSOR;
		return;
	}

	DBG("wf_smu: Drive Fans tick ! HD temp: %d.%03d\n",
	    FIX32TOPRINT(temp));

	if (temp > (st->pid.param.itarget + 0x50000))
		wf_smu_failure_state |= FAILURE_OVERTEMP;

	new_setpoint = wf_pid_run(&st->pid, temp);

	DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);

	if (st->setpoint == new_setpoint)
		return;
	st->setpoint = new_setpoint;
 readjust:
	if (fan_hd && wf_smu_failure_state == 0) {
362
		rc = wf_control_set(fan_hd, st->setpoint);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
		if (rc) {
			printk(KERN_WARNING "windfarm: HD fan error %d\n",
			       rc);
			wf_smu_failure_state |= FAILURE_FAN;
		}
	}
}

static void wf_smu_create_slots_fans(void)
{
	struct wf_pid_param param = {
		.interval	= 1,
		.history_len	= 8,
		.gd		= 0x00000000,
		.gp		= 0x00000000,
		.gr		= 0x00020000,
		.itarget	= 0x00000000
	};

	/* Alloc & initialize state */
	wf_smu_slots_fans = kmalloc(sizeof(struct wf_smu_slots_fans_state),
					GFP_KERNEL);
	if (wf_smu_slots_fans == NULL) {
		printk(KERN_WARNING "windfarm: Memory allocation error"
		       " max fan speed\n");
		goto fail;
	}
       	wf_smu_slots_fans->ticks = 1;

	/* Fill PID params */
	param.additive = (fan_slots->type == WF_CONTROL_RPM_FAN);
394 395
	param.min = wf_control_get_min(fan_slots);
	param.max = wf_control_get_max(fan_slots);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	wf_pid_init(&wf_smu_slots_fans->pid, &param);

	DBG("wf: Slots Fan control initialized.\n");
	DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
	    FIX32TOPRINT(param.itarget), param.min, param.max);
	return;

 fail:
	if (fan_slots)
		wf_control_set_max(fan_slots);
}

static void wf_smu_slots_fans_tick(struct wf_smu_slots_fans_state *st)
{
	s32 new_setpoint, power;
	int rc;

	if (--st->ticks != 0) {
		if (wf_smu_readjust)
			goto readjust;
		return;
	}
	st->ticks = st->pid.param.interval;

420
	rc = wf_sensor_get(sensor_slots_power, &power);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	if (rc) {
		printk(KERN_WARNING "windfarm: Slots power sensor error %d\n",
		       rc);
		wf_smu_failure_state |= FAILURE_SENSOR;
		return;
	}

	DBG("wf_smu: Slots Fans tick ! Slots power: %d.%03d\n",
	    FIX32TOPRINT(power));

#if 0 /* Check what makes a good overtemp condition */
	if (power > (st->pid.param.itarget + 0x50000))
		wf_smu_failure_state |= FAILURE_OVERTEMP;
#endif

	new_setpoint = wf_pid_run(&st->pid, power);

	DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);

	if (st->setpoint == new_setpoint)
		return;
	st->setpoint = new_setpoint;
 readjust:
	if (fan_slots && wf_smu_failure_state == 0) {
445
		rc = wf_control_set(fan_slots, st->setpoint);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
		if (rc) {
			printk(KERN_WARNING "windfarm: Slots fan error %d\n",
			       rc);
			wf_smu_failure_state |= FAILURE_FAN;
		}
	}
}


/*
 * ****** Setup / Init / Misc ... ******
 *
 */

static void wf_smu_tick(void)
{
	unsigned int last_failure = wf_smu_failure_state;
	unsigned int new_failure;

	if (!wf_smu_started) {
		DBG("wf: creating control loops !\n");
		wf_smu_create_drive_fans();
		wf_smu_create_slots_fans();
		wf_smu_create_cpu_fans();
		wf_smu_started = 1;
	}

	/* Skipping ticks */
	if (wf_smu_skipping && --wf_smu_skipping)
		return;

	wf_smu_failure_state = 0;
	if (wf_smu_drive_fans)
		wf_smu_drive_fans_tick(wf_smu_drive_fans);
	if (wf_smu_slots_fans)
		wf_smu_slots_fans_tick(wf_smu_slots_fans);
	if (wf_smu_cpu_fans)
		wf_smu_cpu_fans_tick(wf_smu_cpu_fans);

	wf_smu_readjust = 0;
	new_failure = wf_smu_failure_state & ~last_failure;

	/* If entering failure mode, clamp cpufreq and ramp all
	 * fans to full speed.
	 */
	if (wf_smu_failure_state && !last_failure) {
		if (cpufreq_clamp)
			wf_control_set_max(cpufreq_clamp);
		if (fan_cpu_main)
			wf_control_set_max(fan_cpu_main);
		if (fan_cpu_second)
			wf_control_set_max(fan_cpu_second);
		if (fan_cpu_third)
			wf_control_set_max(fan_cpu_third);
		if (fan_hd)
			wf_control_set_max(fan_hd);
		if (fan_slots)
			wf_control_set_max(fan_slots);
	}

	/* If leaving failure mode, unclamp cpufreq and readjust
	 * all fans on next iteration
	 */
	if (!wf_smu_failure_state && last_failure) {
		if (cpufreq_clamp)
			wf_control_set_min(cpufreq_clamp);
		wf_smu_readjust = 1;
	}

	/* Overtemp condition detected, notify and start skipping a couple
	 * ticks to let the temperature go down
	 */
	if (new_failure & FAILURE_OVERTEMP) {
		wf_set_overtemp();
		wf_smu_skipping = 2;
521
		wf_smu_overtemp = true;
522 523 524 525 526 527 528 529
	}

	/* We only clear the overtemp condition if overtemp is cleared
	 * _and_ no other failure is present. Since a sensor error will
	 * clear the overtemp condition (can't measure temperature) at
	 * the control loop levels, but we don't want to keep it clear
	 * here in this case
	 */
530
	if (!wf_smu_failure_state && wf_smu_overtemp) {
531
		wf_clear_overtemp();
532 533
		wf_smu_overtemp = false;
	}
534 535 536 537 538 539 540 541 542
}


static void wf_smu_new_control(struct wf_control *ct)
{
	if (wf_smu_all_controls_ok)
		return;

	if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-rear-fan-0")) {
543
		if (wf_get_control(ct) == 0)
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
			fan_cpu_main = ct;
	}

	if (fan_cpu_second == NULL && !strcmp(ct->name, "cpu-rear-fan-1")) {
		if (wf_get_control(ct) == 0)
			fan_cpu_second = ct;
	}

	if (fan_cpu_third == NULL && !strcmp(ct->name, "cpu-front-fan-0")) {
		if (wf_get_control(ct) == 0)
			fan_cpu_third = ct;
	}

	if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
		if (wf_get_control(ct) == 0)
			cpufreq_clamp = ct;
	}

	if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
563
		if (wf_get_control(ct) == 0)
564 565 566 567
			fan_hd = ct;
	}

	if (fan_slots == NULL && !strcmp(ct->name, "slots-fan")) {
568
		if (wf_get_control(ct) == 0)
569 570 571 572 573 574 575 576 577 578 579 580 581 582
			fan_slots = ct;
	}

	if (fan_cpu_main && (fan_cpu_second || fan_cpu_third) && fan_hd &&
	    fan_slots && cpufreq_clamp)
		wf_smu_all_controls_ok = 1;
}

static void wf_smu_new_sensor(struct wf_sensor *sr)
{
	if (wf_smu_all_sensors_ok)
		return;

	if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
583
		if (wf_get_sensor(sr) == 0)
584 585 586 587
			sensor_cpu_power = sr;
	}

	if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
588
		if (wf_get_sensor(sr) == 0)
589 590 591 592
			sensor_cpu_temp = sr;
	}

	if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
593
		if (wf_get_sensor(sr) == 0)
594 595 596 597
			sensor_hd_temp = sr;
	}

	if (sensor_slots_power == NULL && !strcmp(sr->name, "slots-power")) {
598
		if (wf_get_sensor(sr) == 0)
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
			sensor_slots_power = sr;
	}

	if (sensor_cpu_power && sensor_cpu_temp &&
	    sensor_hd_temp && sensor_slots_power)
		wf_smu_all_sensors_ok = 1;
}


static int wf_smu_notify(struct notifier_block *self,
			       unsigned long event, void *data)
{
	switch(event) {
	case WF_EVENT_NEW_CONTROL:
		DBG("wf: new control %s detected\n",
		    ((struct wf_control *)data)->name);
		wf_smu_new_control(data);
		wf_smu_readjust = 1;
		break;
	case WF_EVENT_NEW_SENSOR:
		DBG("wf: new sensor %s detected\n",
		    ((struct wf_sensor *)data)->name);
		wf_smu_new_sensor(data);
		break;
	case WF_EVENT_TICK:
		if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
			wf_smu_tick();
	}

	return 0;
}

static struct notifier_block wf_smu_events = {
	.notifier_call	= wf_smu_notify,
};

static int wf_init_pm(void)
{
	printk(KERN_INFO "windfarm: Initializing for Desktop G5 model\n");

	return 0;
}

642
static int wf_smu_probe(struct platform_device *ddev)
643 644 645 646 647 648
{
	wf_register_client(&wf_smu_events);

	return 0;
}

649
static int wf_smu_remove(struct platform_device *ddev)
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
{
	wf_unregister_client(&wf_smu_events);

	/* XXX We don't have yet a guarantee that our callback isn't
	 * in progress when returning from wf_unregister_client, so
	 * we add an arbitrary delay. I'll have to fix that in the core
	 */
	msleep(1000);

	/* Release all sensors */
	/* One more crappy race: I don't think we have any guarantee here
	 * that the attribute callback won't race with the sensor beeing
	 * disposed of, and I'm not 100% certain what best way to deal
	 * with that except by adding locks all over... I'll do that
	 * eventually but heh, who ever rmmod this module anyway ?
	 */
666
	if (sensor_cpu_power)
667
		wf_put_sensor(sensor_cpu_power);
668
	if (sensor_cpu_temp)
669
		wf_put_sensor(sensor_cpu_temp);
670
	if (sensor_hd_temp)
671
		wf_put_sensor(sensor_hd_temp);
672
	if (sensor_slots_power)
673 674 675
		wf_put_sensor(sensor_slots_power);

	/* Release all controls */
676
	if (fan_cpu_main)
677 678 679 680 681
		wf_put_control(fan_cpu_main);
	if (fan_cpu_second)
		wf_put_control(fan_cpu_second);
	if (fan_cpu_third)
		wf_put_control(fan_cpu_third);
682
	if (fan_hd)
683
		wf_put_control(fan_hd);
684
	if (fan_slots)
685 686 687 688 689
		wf_put_control(fan_slots);
	if (cpufreq_clamp)
		wf_put_control(cpufreq_clamp);

	/* Destroy control loops state structures */
690 691 692
	kfree(wf_smu_slots_fans);
	kfree(wf_smu_drive_fans);
	kfree(wf_smu_cpu_fans);
693 694 695 696

	return 0;
}

697
static struct platform_driver wf_smu_driver = {
698
        .probe = wf_smu_probe,
699
        .remove = wf_smu_remove,
700 701 702
	.driver = {
		.name = "windfarm",
	},
703 704 705 706 707 708 709
};


static int __init wf_smu_init(void)
{
	int rc = -ENODEV;

710
	if (of_machine_is_compatible("PowerMac9,1"))
711 712 713 714 715 716 717
		rc = wf_init_pm();

	if (rc == 0) {
#ifdef MODULE
		request_module("windfarm_smu_controls");
		request_module("windfarm_smu_sensors");
		request_module("windfarm_lm75_sensor");
718
		request_module("windfarm_cpufreq_clamp");
719 720

#endif /* MODULE */
721
		platform_driver_register(&wf_smu_driver);
722 723 724 725 726 727 728 729
	}

	return rc;
}

static void __exit wf_smu_exit(void)
{

730
	platform_driver_unregister(&wf_smu_driver);
731 732 733 734 735 736 737 738 739 740
}


module_init(wf_smu_init);
module_exit(wf_smu_exit);

MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
MODULE_DESCRIPTION("Thermal control logic for PowerMac9,1");
MODULE_LICENSE("GPL");

741
MODULE_ALIAS("platform:windfarm");