workqueue.c 156 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
/*
Tejun Heo's avatar
Tejun Heo committed
2
 * kernel/workqueue.c - generic async execution with shared worker pool
Linus Torvalds's avatar
Linus Torvalds committed
3
 *
Tejun Heo's avatar
Tejun Heo committed
4
 * Copyright (C) 2002		Ingo Molnar
Linus Torvalds's avatar
Linus Torvalds committed
5
 *
Tejun Heo's avatar
Tejun Heo committed
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
Linus Torvalds's avatar
Linus Torvalds committed
11
 *
Tejun Heo's avatar
Tejun Heo committed
12
 * Made to use alloc_percpu by Christoph Lameter.
Linus Torvalds's avatar
Linus Torvalds committed
13
 *
Tejun Heo's avatar
Tejun Heo committed
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
Tejun Heo's avatar
Tejun Heo committed
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
Tejun Heo's avatar
Tejun Heo committed
23
 *
24
 * Please read Documentation/core-api/workqueue.rst for details.
Linus Torvalds's avatar
Linus Torvalds committed
25 26
 */

27
#include <linux/export.h>
Linus Torvalds's avatar
Linus Torvalds committed
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
Tejun Heo's avatar
Tejun Heo committed
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
Linus Torvalds's avatar
Linus Torvalds committed
53

54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73

74 75 76
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
77
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81

82 83
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
84

85
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86

87
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
88
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89

90 91 92
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

93 94 95
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
101
	 * all cpus.  Give MIN_NICE.
102
	 */
103 104
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
105 106

	WQ_NAME_LEN		= 24,
107
};
Linus Torvalds's avatar
Linus Torvalds committed
108 109

/*
110 111
 * Structure fields follow one of the following exclusion rules.
 *
112 113
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
114
 *
115 116 117
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
118
 * L: pool->lock protected.  Access with pool->lock held.
119
 *
120 121 122 123
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
124
 *
125
 * A: pool->attach_mutex protected.
126
 *
127
 * PL: wq_pool_mutex protected.
128
 *
129
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130
 *
131 132 133 134 135
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
136 137
 * WQ: wq->mutex protected.
 *
138
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
139 140
 *
 * MD: wq_mayday_lock protected.
Linus Torvalds's avatar
Linus Torvalds committed
141 142
 */

143
/* struct worker is defined in workqueue_internal.h */
Tejun Heo's avatar
Tejun Heo committed
144

145
struct worker_pool {
146
	spinlock_t		lock;		/* the pool lock */
147
	int			cpu;		/* I: the associated cpu */
148
	int			node;		/* I: the associated node ID */
149
	int			id;		/* I: pool ID */
150
	unsigned int		flags;		/* X: flags */
151

152 153
	unsigned long		watchdog_ts;	/* L: watchdog timestamp */

154 155
	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
156 157

	/* nr_idle includes the ones off idle_list for rebinding */
158 159 160 161 162 163
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

164
	/* a workers is either on busy_hash or idle_list, or the manager */
165 166 167
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

168
	/* see manage_workers() for details on the two manager mutexes */
169
	struct worker		*manager;	/* L: purely informational */
170 171
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
172
	struct completion	*detach_completion; /* all workers detached */
173

174
	struct ida		worker_ida;	/* worker IDs for task name */
175

176
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 178
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
179

180 181 182 183 184 185
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 187 188 189 190 191

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
192 193
} ____cacheline_aligned_in_smp;

Linus Torvalds's avatar
Linus Torvalds committed
194
/*
195 196 197 198
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
Linus Torvalds's avatar
Linus Torvalds committed
199
 */
200
struct pool_workqueue {
201
	struct worker_pool	*pool;		/* I: the associated pool */
202
	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 204
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
205
	int			refcnt;		/* L: reference count */
206 207
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
208
	int			nr_active;	/* L: nr of active works */
209
	int			max_active;	/* L: max active works */
210
	struct list_head	delayed_works;	/* L: delayed works */
211
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 214 215 216 217

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
218
	 * determined without grabbing wq->mutex.
219 220 221
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
222
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
Linus Torvalds's avatar
Linus Torvalds committed
223

224 225 226 227
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
228 229
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
230 231 232
	struct completion	done;		/* flush completion */
};

233 234
struct wq_device;

Linus Torvalds's avatar
Linus Torvalds committed
235
/*
236 237
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
Linus Torvalds's avatar
Linus Torvalds committed
238 239
 */
struct workqueue_struct {
240
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241
	struct list_head	list;		/* PR: list of all workqueues */
242

243 244 245
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
246
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 248 249
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250

251
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 253
	struct worker		*rescuer;	/* I: rescue worker */

254
	int			nr_drainers;	/* WQ: drain in progress */
255
	int			saved_max_active; /* WQ: saved pwq max_active */
256

257 258
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259

260 261 262
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
263
#ifdef CONFIG_LOCKDEP
264
	struct lockdep_map	lockdep_map;
265
#endif
266
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267

268 269 270 271 272 273 274
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

275 276 277
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
Linus Torvalds's avatar
Linus Torvalds committed
279 280
};

281 282
static struct kmem_cache *pwq_cache;

283 284 285
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

286 287 288
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

289
/* see the comment above the definition of WQ_POWER_EFFICIENT */
290
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 292
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

293
static bool wq_online;			/* can kworkers be created yet? */
294

295 296
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

297 298 299
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

300
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
302
static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
303

304
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
305
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
306

307 308 309 310 311
/* PL: allowable cpus for unbound wqs and work items */
static cpumask_var_t wq_unbound_cpumask;

/* CPU where unbound work was last round robin scheduled from this CPU */
static DEFINE_PER_CPU(int, wq_rr_cpu_last);
312

313 314 315 316 317 318 319 320 321 322 323 324
/*
 * Local execution of unbound work items is no longer guaranteed.  The
 * following always forces round-robin CPU selection on unbound work items
 * to uncover usages which depend on it.
 */
#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
static bool wq_debug_force_rr_cpu = true;
#else
static bool wq_debug_force_rr_cpu = false;
#endif
module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);

325
/* the per-cpu worker pools */
326
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
327

328
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
329

330
/* PL: hash of all unbound pools keyed by pool->attrs */
331 332
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

333
/* I: attributes used when instantiating standard unbound pools on demand */
334 335
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

336 337 338
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

339
struct workqueue_struct *system_wq __read_mostly;
340
EXPORT_SYMBOL(system_wq);
341
struct workqueue_struct *system_highpri_wq __read_mostly;
342
EXPORT_SYMBOL_GPL(system_highpri_wq);
343
struct workqueue_struct *system_long_wq __read_mostly;
344
EXPORT_SYMBOL_GPL(system_long_wq);
345
struct workqueue_struct *system_unbound_wq __read_mostly;
346
EXPORT_SYMBOL_GPL(system_unbound_wq);
347
struct workqueue_struct *system_freezable_wq __read_mostly;
348
EXPORT_SYMBOL_GPL(system_freezable_wq);
349 350 351 352
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
353

354
static int worker_thread(void *__worker);
355
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
356

357 358 359
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

360
#define assert_rcu_or_pool_mutex()					\
361 362 363
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU or wq_pool_mutex should be held")
364

365
#define assert_rcu_or_wq_mutex(wq)					\
366 367 368
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex),			\
			 "sched RCU or wq->mutex should be held")
369

370
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
371 372 373 374
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex) &&		\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
375

376 377 378
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379
	     (pool)++)
380

381 382 383
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
384
 * @pi: integer used for iteration
385
 *
386 387 388
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
389 390 391
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
392
 */
393 394
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
395
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
396
		else
397

398 399 400 401 402
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
403
 * This must be called with @pool->attach_mutex.
404 405 406 407
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
408 409
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
410
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
411 412
		else

413 414 415 416
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
417
 *
418
 * This must be called either with wq->mutex held or sched RCU read locked.
419 420
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
421 422 423
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
424 425
 */
#define for_each_pwq(pwq, wq)						\
426
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
427
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
428
		else
429

430 431 432 433
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

434 435 436 437 438
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

439 440 441 442 443 444 445
static bool work_is_static_object(void *addr)
{
	struct work_struct *work = addr;

	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
}

446 447 448 449
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
450
static bool work_fixup_init(void *addr, enum debug_obj_state state)
451 452 453 454 455 456 457
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
458
		return true;
459
	default:
460
		return false;
461 462 463 464 465 466 467
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
468
static bool work_fixup_free(void *addr, enum debug_obj_state state)
469 470 471 472 473 474 475
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
476
		return true;
477
	default:
478
		return false;
479 480 481 482 483
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
484
	.debug_hint	= work_debug_hint,
485
	.is_static_object = work_is_static_object,
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	.fixup_init	= work_fixup_init,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

515 516 517 518 519 520 521
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

522 523 524 525 526
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

527 528 529 530 531 532 533
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
534 535 536 537
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

538
	lockdep_assert_held(&wq_pool_mutex);
539

540 541
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
542
	if (ret >= 0) {
543
		pool->id = ret;
544 545
		return 0;
	}
546
	return ret;
547 548
}

549 550 551 552 553
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
554 555
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
556 557
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
558 559
 *
 * Return: The unbound pool_workqueue for @node.
560 561 562 563
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
564
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
565 566 567 568 569 570 571 572 573 574

	/*
	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
	 * delayed item is pending.  The plan is to keep CPU -> NODE
	 * mapping valid and stable across CPU on/offlines.  Once that
	 * happens, this workaround can be removed.
	 */
	if (unlikely(node == NUMA_NO_NODE))
		return wq->dfl_pwq;

575 576 577
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
Linus Torvalds's avatar
Linus Torvalds committed
593

594
/*
595 596
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
597
 * is cleared and the high bits contain OFFQ flags and pool ID.
598
 *
599 600
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
601 602
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
603
 *
604
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
605
 * corresponding to a work.  Pool is available once the work has been
606
 * queued anywhere after initialization until it is sync canceled.  pwq is
607
 * available only while the work item is queued.
608
 *
609 610 611 612
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
613
 */
614 615
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
616
{
617
	WARN_ON_ONCE(!work_pending(work));
618 619
	atomic_long_set(&work->data, data | flags | work_static(work));
}
620

621
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
622 623
			 unsigned long extra_flags)
{
624 625
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
626 627
}

628 629 630 631 632 633 634
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

635 636
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
637
{
638 639 640 641 642 643 644
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
645
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	/*
	 * The following mb guarantees that previous clear of a PENDING bit
	 * will not be reordered with any speculative LOADS or STORES from
	 * work->current_func, which is executed afterwards.  This possible
	 * reordering can lead to a missed execution on attempt to qeueue
	 * the same @work.  E.g. consider this case:
	 *
	 *   CPU#0                         CPU#1
	 *   ----------------------------  --------------------------------
	 *
	 * 1  STORE event_indicated
	 * 2  queue_work_on() {
	 * 3    test_and_set_bit(PENDING)
	 * 4 }                             set_..._and_clear_pending() {
	 * 5                                 set_work_data() # clear bit
	 * 6                                 smp_mb()
	 * 7                               work->current_func() {
	 * 8				      LOAD event_indicated
	 *				   }
	 *
	 * Without an explicit full barrier speculative LOAD on line 8 can
	 * be executed before CPU#0 does STORE on line 1.  If that happens,
	 * CPU#0 observes the PENDING bit is still set and new execution of
	 * a @work is not queued in a hope, that CPU#1 will eventually
	 * finish the queued @work.  Meanwhile CPU#1 does not see
	 * event_indicated is set, because speculative LOAD was executed
	 * before actual STORE.
	 */
	smp_mb();
675
}
676

677
static void clear_work_data(struct work_struct *work)
Linus Torvalds's avatar
Linus Torvalds committed
678
{
679 680
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
Linus Torvalds's avatar
Linus Torvalds committed
681 682
}

683
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
684
{
685
	unsigned long data = atomic_long_read(&work->data);
686

687
	if (data & WORK_STRUCT_PWQ)
688 689 690
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
691 692
}

693 694 695 696
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
697 698 699
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
700 701 702 703 704
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
705 706
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
707 708
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
709
{
710
	unsigned long data = atomic_long_read(&work->data);
711
	int pool_id;
712

713
	assert_rcu_or_pool_mutex();
714

715 716
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
717
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
718

719 720
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
721 722
		return NULL;

723
	return idr_find(&worker_pool_idr, pool_id);
724 725 726 727 728 729
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
730
 * Return: The worker_pool ID @work was last associated with.
731 732 733 734
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
735 736
	unsigned long data = atomic_long_read(&work->data);

737 738
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
739
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
740

741
	return data >> WORK_OFFQ_POOL_SHIFT;
742 743
}

744 745
static void mark_work_canceling(struct work_struct *work)
{
746
	unsigned long pool_id = get_work_pool_id(work);
747

748 749
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
750 751 752 753 754 755
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

756
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
757 758
}

759
/*
760 761
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
762
 * they're being called with pool->lock held.
763 764
 */

765
static bool __need_more_worker(struct worker_pool *pool)
766
{
767
	return !atomic_read(&pool->nr_running);
768 769
}

770
/*
771 772
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
773 774
 *
 * Note that, because unbound workers never contribute to nr_running, this
775
 * function will always return %true for unbound pools as long as the
776
 * worklist isn't empty.
777
 */
778
static bool need_more_worker(struct worker_pool *pool)
779
{
780
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
781
}
782

783
/* Can I start working?  Called from busy but !running workers. */
784
static bool may_start_working(struct worker_pool *pool)
785
{
786
	return pool->nr_idle;
787 788 789
}

/* Do I need to keep working?  Called from currently running workers. */
790
static bool keep_working(struct worker_pool *pool)
791
{
792 793
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
794 795 796
}

/* Do we need a new worker?  Called from manager. */
797
static bool need_to_create_worker(struct worker_pool *pool)
798
{
799
	return need_more_worker(pool) && !may_start_working(pool);
800
}
801

802
/* Do we have too many workers and should some go away? */
803
static bool too_many_workers(struct worker_pool *pool)
804
{
805
	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
806 807
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
808 809

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
810 811
}

812
/*
813 814 815
 * Wake up functions.
 */

816 817
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
818
{
819
	if (unlikely(list_empty(&pool->idle_list)))
820 821
		return NULL;

822
	return list_first_entry(&pool->idle_list, struct worker, entry);
823 824 825 826
}

/**
 * wake_up_worker - wake up an idle worker
827
 * @pool: worker pool to wake worker from
828
 *
829
 * Wake up the first idle worker of @pool.
830 831
 *
 * CONTEXT:
832
 * spin_lock_irq(pool->lock).
833
 */
834
static void wake_up_worker(struct worker_pool *pool)
835
{
836
	struct worker *worker = first_idle_worker(pool);
837 838 839 840 841

	if (likely(worker))
		wake_up_process(worker->task);
}

842
/**
843 844 845 846 847 848 849 850 851 852
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
853
void wq_worker_waking_up(struct task_struct *task, int cpu)
854 855 856
{
	struct worker *worker = kthread_data(task);

857
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
858
		WARN_ON_ONCE(worker->pool->cpu != cpu);
859
		atomic_inc(&worker->pool->nr_running);
860
	}
861 862 863 864 865 866 867 868 869 870 871 872 873
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
874
 * Return:
875 876
 * Worker task on @cpu to wake up, %NULL if none.
 */
877
struct task_struct *wq_worker_sleeping(struct task_struct *task)
878 879
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
880
	struct worker_pool *pool;
881

882 883 884 885 886
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
887
	if (worker->flags & WORKER_NOT_RUNNING)
888 889
		return NULL;

890 891
	pool = worker->pool;

892
	/* this can only happen on the local cpu */
893
	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
894
		return NULL;
895 896 897 898 899 900

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
901 902 903
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
904
	 * manipulating idle_list, so dereferencing idle_list without pool
905
	 * lock is safe.
906
	 */
907 908
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
909
		to_wakeup = first_idle_worker(pool);
910 911 912 913 914
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
915
 * @worker: self
916 917
 * @flags: flags to set
 *
918
 * Set @flags in @worker->flags and adjust nr_running accordingly.
919
 *
920
 * CONTEXT:
921
 * spin_lock_irq(pool->lock)
922
 */
923
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
924
{
925
	struct worker_pool *pool = worker->pool;
926

927 928
	WARN_ON_ONCE(worker->task != current);

929
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
930 931
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
932
		atomic_dec(&pool->nr_running);
933 934
	}

935 936 937 938
	worker->flags |= flags;
}

/**
939
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
940
 * @worker: self
941 942
 * @flags: flags to clear
 *
943
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
944
 *
945
 * CONTEXT:
946
 * spin_lock_irq(pool->lock)
947 948 949
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
950
	struct worker_pool *pool = worker->pool;
951 952
	unsigned int oflags = worker->flags;

953 954
	WARN_ON_ONCE(worker->task != current);

955
	worker->flags &= ~flags;
956

957 958 959 960 961
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
962 963
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
964
			atomic_inc(&pool->nr_running);
965 966
}

967 968
/**
 * find_worker_executing_work - find worker which is executing a work
969
 * @pool: pool of interest
970 971
 * @work: work to find worker for
 *
972 973
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
974 975 976 977 978 979 980 981 982 983 984 985
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
986 987 988 989 990 991
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
992 993
 *
 * CONTEXT:
994
 * spin_lock_irq(pool->lock).
995
 *
996 997
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
998
 * otherwise.
999
 */
1000
static struct worker *find_worker_executing_work(struct worker_pool *pool,
1001
						 struct work_struct *work)
1002
{
1003 1004
	struct worker *worker;

1005
	hash_for_each_possible(pool->busy_hash, worker, hentry,
1006 1007 1008
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
1009 1010 1011
			return worker;

	return NULL;
1012 1013
}

1014 1015 1016 1017
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
1018
 * @nextp: out parameter for nested worklist walking
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1029
 * spin_lock_irq(pool->lock).
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1113
static void pwq_activate_delayed_work(struct work_struct *work)
1114
{
1115
	struct pool_workqueue *pwq = get_work_pwq(work);
1116 1117

	trace_workqueue_activate_work(work);
1118 1119
	if (list_empty(&pwq->pool->worklist))
		pwq->pool->watchdog_ts = jiffies;
1120
	move_linked_works(work, &pwq->pool->worklist, NULL);
1121
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1122
	pwq->nr_active++;
1123 1124
}

1125
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1126
{
1127
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1128 1129
						    struct work_struct, entry);

1130
	pwq_activate_delayed_work(work);
1131 1132
}

1133
/**
1134 1135
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1136 1137 1138
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1139
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1140 1141
 *
 * CONTEXT:
1142
 * spin_lock_irq(pool->lock).
1143
 */
1144
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1145
{
1146
	/* uncolored work items don't participate in flushing or nr_active */
1147
	if (color == WORK_NO_COLOR)
1148
		goto out_put;
1149

1150
	pwq->nr_in_flight[color]--;
1151

1152 1153
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1154
		/* one down, submit a delayed one */
1155 1156
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1157 1158 1159
	}

	/* is flush in progress and are we at the flushing tip? */
1160
	if (likely(pwq->flush_color != color))
1161
		goto out_put;
1162 1163

	/* are there still in-flight works? */
1164
	if (pwq->nr_in_flight[color])
1165
		goto out_put;
1166

1167 1168
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1169 1170

	/*
1171
	 * If this was the last pwq, wake up the first flusher.  It
1172 1173
	 * will handle the rest.
	 */
1174 1175
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1176 1177
out_put:
	put_pwq(pwq);
1178 1179
}

1180
/**
1181
 * try_to_grab_pending - steal work item from worklist and disable irq
1182 1183
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1184
 * @flags: place to store irq state
1185 1186
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1187
 * stable state - idle, on timer or on worklist.
1188
 *
1189
 * Return:
1190 1191 1192
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1193 1194
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1195
 *
1196
 * Note:
1197
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1198 1199 1200
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1201 1202 1203 1204
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1205
 * This function is safe to call from any context including IRQ handler.
1206
 */