qoriq-cpufreq.c 8.97 KB
Newer Older
1 2 3
/*
 * Copyright 2013 Freescale Semiconductor, Inc.
 *
4
 * CPU Frequency Scaling driver for Freescale QorIQ SoCs.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/clk.h>
#include <linux/cpufreq.h>
15
#include <linux/cpu_cooling.h>
16 17 18 19 20 21 22 23 24
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/smp.h>

25
#if !defined(CONFIG_ARM)
26
#include <asm/smp.h>	/* for get_hard_smp_processor_id() in UP configs */
27
#endif
28

29
/**
30
 * struct cpu_data
31
 * @pclk: the parent clock of cpu
32 33 34
 * @table: frequency table
 */
struct cpu_data {
35
	struct clk **pclk;
36
	struct cpufreq_frequency_table *table;
37
	struct thermal_cooling_device *cdev;
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
};

/**
 * struct soc_data - SoC specific data
 * @freq_mask: mask the disallowed frequencies
 * @flag: unique flags
 */
struct soc_data {
	u32 freq_mask[4];
	u32 flag;
};

#define FREQ_MASK	1
/* see hardware specification for the allowed frqeuencies */
static const struct soc_data sdata[] = {
	{ /* used by p2041 and p3041 */
		.freq_mask = {0x8, 0x8, 0x2, 0x2},
		.flag = FREQ_MASK,
	},
	{ /* used by p5020 */
		.freq_mask = {0x8, 0x2},
		.flag = FREQ_MASK,
	},
	{ /* used by p4080, p5040 */
		.freq_mask = {0},
		.flag = 0,
	},
};

/*
 * the minimum allowed core frequency, in Hz
 * for chassis v1.0, >= platform frequency
 * for chassis v2.0, >= platform frequency / 2
 */
static u32 min_cpufreq;
static const u32 *fmask;

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#if defined(CONFIG_ARM)
static int get_cpu_physical_id(int cpu)
{
	return topology_core_id(cpu);
}
#else
static int get_cpu_physical_id(int cpu)
{
	return get_hard_smp_processor_id(cpu);
}
#endif

static u32 get_bus_freq(void)
{
	struct device_node *soc;
	u32 sysfreq;

	soc = of_find_node_by_type(NULL, "soc");
	if (!soc)
		return 0;

	if (of_property_read_u32(soc, "bus-frequency", &sysfreq))
		sysfreq = 0;

	of_node_put(soc);
100

101 102
	return sysfreq;
}
103

104
static struct device_node *cpu_to_clk_node(int cpu)
105
{
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	struct device_node *np, *clk_np;

	if (!cpu_present(cpu))
		return NULL;

	np = of_get_cpu_node(cpu, NULL);
	if (!np)
		return NULL;

	clk_np = of_parse_phandle(np, "clocks", 0);
	if (!clk_np)
		return NULL;

	of_node_put(np);

	return clk_np;
}

/* traverse cpu nodes to get cpu mask of sharing clock wire */
static void set_affected_cpus(struct cpufreq_policy *policy)
{
	struct device_node *np, *clk_np;
	struct cpumask *dstp = policy->cpus;
	int i;

	np = cpu_to_clk_node(policy->cpu);
	if (!np)
		return;

	for_each_present_cpu(i) {
		clk_np = cpu_to_clk_node(i);
		if (!clk_np)
			continue;

		if (clk_np == np)
			cpumask_set_cpu(i, dstp);

		of_node_put(clk_np);
	}
	of_node_put(np);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
}

/* reduce the duplicated frequencies in frequency table */
static void freq_table_redup(struct cpufreq_frequency_table *freq_table,
		int count)
{
	int i, j;

	for (i = 1; i < count; i++) {
		for (j = 0; j < i; j++) {
			if (freq_table[j].frequency == CPUFREQ_ENTRY_INVALID ||
					freq_table[j].frequency !=
					freq_table[i].frequency)
				continue;

			freq_table[i].frequency = CPUFREQ_ENTRY_INVALID;
			break;
		}
	}
}

/* sort the frequencies in frequency table in descenting order */
static void freq_table_sort(struct cpufreq_frequency_table *freq_table,
		int count)
{
	int i, j, ind;
	unsigned int freq, max_freq;
	struct cpufreq_frequency_table table;
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	for (i = 0; i < count - 1; i++) {
		max_freq = freq_table[i].frequency;
		ind = i;
		for (j = i + 1; j < count; j++) {
			freq = freq_table[j].frequency;
			if (freq == CPUFREQ_ENTRY_INVALID ||
					freq <= max_freq)
				continue;
			ind = j;
			max_freq = freq;
		}

		if (ind != i) {
			/* exchange the frequencies */
			table.driver_data = freq_table[i].driver_data;
			table.frequency = freq_table[i].frequency;
			freq_table[i].driver_data = freq_table[ind].driver_data;
			freq_table[i].frequency = freq_table[ind].frequency;
			freq_table[ind].driver_data = table.driver_data;
			freq_table[ind].frequency = table.frequency;
		}
	}
}

199
static int qoriq_cpufreq_cpu_init(struct cpufreq_policy *policy)
200
{
201
	struct device_node *np, *pnode;
202 203 204 205 206 207
	int i, count, ret;
	u32 freq, mask;
	struct clk *clk;
	struct cpufreq_frequency_table *table;
	struct cpu_data *data;
	unsigned int cpu = policy->cpu;
208
	u64 u64temp;
209 210 211 212 213 214

	np = of_get_cpu_node(cpu, NULL);
	if (!np)
		return -ENODEV;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
215
	if (!data)
216 217
		goto err_np;

218 219
	policy->clk = of_clk_get(np, 0);
	if (IS_ERR(policy->clk)) {
220 221 222 223
		pr_err("%s: no clock information\n", __func__);
		goto err_nomem2;
	}

224 225
	pnode = of_parse_phandle(np, "clocks", 0);
	if (!pnode) {
226 227 228 229
		pr_err("%s: could not get clock information\n", __func__);
		goto err_nomem2;
	}

230 231 232 233 234 235 236
	count = of_property_count_strings(pnode, "clock-names");
	data->pclk = kcalloc(count, sizeof(struct clk *), GFP_KERNEL);
	if (!data->pclk) {
		pr_err("%s: no memory\n", __func__);
		goto err_node;
	}

237 238 239
	table = kcalloc(count + 1, sizeof(*table), GFP_KERNEL);
	if (!table) {
		pr_err("%s: no memory\n", __func__);
240
		goto err_pclk;
241 242 243
	}

	if (fmask)
244
		mask = fmask[get_cpu_physical_id(cpu)];
245 246 247 248
	else
		mask = 0x0;

	for (i = 0; i < count; i++) {
249 250
		clk = of_clk_get(pnode, i);
		data->pclk[i] = clk;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
		freq = clk_get_rate(clk);
		/*
		 * the clock is valid if its frequency is not masked
		 * and large than minimum allowed frequency.
		 */
		if (freq < min_cpufreq || (mask & (1 << i)))
			table[i].frequency = CPUFREQ_ENTRY_INVALID;
		else
			table[i].frequency = freq / 1000;
		table[i].driver_data = i;
	}
	freq_table_redup(table, count);
	freq_table_sort(table, count);
	table[i].frequency = CPUFREQ_TABLE_END;

	/* set the min and max frequency properly */
267
	ret = cpufreq_table_validate_and_show(policy, table);
268 269 270 271 272 273 274 275
	if (ret) {
		pr_err("invalid frequency table: %d\n", ret);
		goto err_nomem1;
	}

	data->table = table;

	/* update ->cpus if we have cluster, no harm if not */
276 277
	set_affected_cpus(policy);
	policy->driver_data = data;
278

279 280
	/* Minimum transition latency is 12 platform clocks */
	u64temp = 12ULL * NSEC_PER_SEC;
281
	do_div(u64temp, get_bus_freq());
282
	policy->cpuinfo.transition_latency = u64temp + 1;
283

284
	of_node_put(np);
285
	of_node_put(pnode);
286 287 288 289 290

	return 0;

err_nomem1:
	kfree(table);
291 292
err_pclk:
	kfree(data->pclk);
293
err_node:
294
	of_node_put(pnode);
295
err_nomem2:
296
	policy->driver_data = NULL;
297 298 299 300 301 302 303
	kfree(data);
err_np:
	of_node_put(np);

	return -ENODEV;
}

304
static int __exit qoriq_cpufreq_cpu_exit(struct cpufreq_policy *policy)
305
{
306
	struct cpu_data *data = policy->driver_data;
307

308
	kfree(data->pclk);
309 310
	kfree(data->table);
	kfree(data);
311
	policy->driver_data = NULL;
312 313 314 315

	return 0;
}

316
static int qoriq_cpufreq_target(struct cpufreq_policy *policy,
317
		unsigned int index)
318 319
{
	struct clk *parent;
320
	struct cpu_data *data = policy->driver_data;
321

322
	parent = data->pclk[data->table[index].driver_data];
323
	return clk_set_parent(policy->clk, parent);
324 325
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

static void qoriq_cpufreq_ready(struct cpufreq_policy *policy)
{
	struct cpu_data *cpud = policy->driver_data;
	struct device_node *np = of_get_cpu_node(policy->cpu, NULL);

	if (of_find_property(np, "#cooling-cells", NULL)) {
		cpud->cdev = of_cpufreq_cooling_register(np,
							 policy->related_cpus);

		if (IS_ERR(cpud->cdev)) {
			pr_err("Failed to register cooling device cpu%d: %ld\n",
					policy->cpu, PTR_ERR(cpud->cdev));

			cpud->cdev = NULL;
		}
	}

	of_node_put(np);
}

347 348
static struct cpufreq_driver qoriq_cpufreq_driver = {
	.name		= "qoriq_cpufreq",
349
	.flags		= CPUFREQ_CONST_LOOPS,
350 351
	.init		= qoriq_cpufreq_cpu_init,
	.exit		= __exit_p(qoriq_cpufreq_cpu_exit),
352
	.verify		= cpufreq_generic_frequency_table_verify,
353
	.target_index	= qoriq_cpufreq_target,
354
	.get		= cpufreq_generic_get,
355
	.ready		= qoriq_cpufreq_ready,
356
	.attr		= cpufreq_generic_attr,
357 358
};

359
static const struct of_device_id node_matches[] __initconst = {
360 361 362 363 364 365 366 367 368
	{ .compatible = "fsl,p2041-clockgen", .data = &sdata[0], },
	{ .compatible = "fsl,p3041-clockgen", .data = &sdata[0], },
	{ .compatible = "fsl,p5020-clockgen", .data = &sdata[1], },
	{ .compatible = "fsl,p4080-clockgen", .data = &sdata[2], },
	{ .compatible = "fsl,p5040-clockgen", .data = &sdata[2], },
	{ .compatible = "fsl,qoriq-clockgen-2.0", },
	{}
};

369
static int __init qoriq_cpufreq_init(void)
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
{
	int ret;
	struct device_node  *np;
	const struct of_device_id *match;
	const struct soc_data *data;

	np = of_find_matching_node(NULL, node_matches);
	if (!np)
		return -ENODEV;

	match = of_match_node(node_matches, np);
	data = match->data;
	if (data) {
		if (data->flag)
			fmask = data->freq_mask;
385
		min_cpufreq = get_bus_freq();
386
	} else {
387
		min_cpufreq = get_bus_freq() / 2;
388 389 390 391
	}

	of_node_put(np);

392
	ret = cpufreq_register_driver(&qoriq_cpufreq_driver);
393
	if (!ret)
394
		pr_info("Freescale QorIQ CPU frequency scaling driver\n");
395 396 397

	return ret;
}
398
module_init(qoriq_cpufreq_init);
399

400
static void __exit qoriq_cpufreq_exit(void)
401
{
402
	cpufreq_unregister_driver(&qoriq_cpufreq_driver);
403
}
404
module_exit(qoriq_cpufreq_exit);
405 406 407

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Tang Yuantian <Yuantian.Tang@freescale.com>");
408
MODULE_DESCRIPTION("cpufreq driver for Freescale QorIQ series SoCs");