page_ext.c 11 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/page_ext.h>
#include <linux/memory.h>
#include <linux/vmalloc.h>
#include <linux/kmemleak.h>
9
#include <linux/page_owner.h>
10
#include <linux/page_idle.h>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * struct page extension
 *
 * This is the feature to manage memory for extended data per page.
 *
 * Until now, we must modify struct page itself to store extra data per page.
 * This requires rebuilding the kernel and it is really time consuming process.
 * And, sometimes, rebuild is impossible due to third party module dependency.
 * At last, enlarging struct page could cause un-wanted system behaviour change.
 *
 * This feature is intended to overcome above mentioned problems. This feature
 * allocates memory for extended data per page in certain place rather than
 * the struct page itself. This memory can be accessed by the accessor
 * functions provided by this code. During the boot process, it checks whether
 * allocation of huge chunk of memory is needed or not. If not, it avoids
 * allocating memory at all. With this advantage, we can include this feature
 * into the kernel in default and can avoid rebuild and solve related problems.
 *
 * To help these things to work well, there are two callbacks for clients. One
 * is the need callback which is mandatory if user wants to avoid useless
 * memory allocation at boot-time. The other is optional, init callback, which
 * is used to do proper initialization after memory is allocated.
 *
 * The need callback is used to decide whether extended memory allocation is
 * needed or not. Sometimes users want to deactivate some features in this
 * boot and extra memory would be unneccessary. In this case, to avoid
 * allocating huge chunk of memory, each clients represent their need of
 * extra memory through the need callback. If one of the need callbacks
 * returns true, it means that someone needs extra memory so that
 * page extension core should allocates memory for page extension. If
 * none of need callbacks return true, memory isn't needed at all in this boot
 * and page extension core can skip to allocate memory. As result,
 * none of memory is wasted.
 *
46 47 48 49 50
 * When need callback returns true, page_ext checks if there is a request for
 * extra memory through size in struct page_ext_operations. If it is non-zero,
 * extra space is allocated for each page_ext entry and offset is returned to
 * user through offset in struct page_ext_operations.
 *
51 52 53 54 55 56 57 58 59 60 61
 * The init callback is used to do proper initialization after page extension
 * is completely initialized. In sparse memory system, extra memory is
 * allocated some time later than memmap is allocated. In other words, lifetime
 * of memory for page extension isn't same with memmap for struct page.
 * Therefore, clients can't store extra data until page extension is
 * initialized, even if pages are allocated and used freely. This could
 * cause inadequate state of extra data per page, so, to prevent it, client
 * can utilize this callback to initialize the state of it correctly.
 */

static struct page_ext_operations *page_ext_ops[] = {
62
	&debug_guardpage_ops,
63 64 65
#ifdef CONFIG_PAGE_OWNER
	&page_owner_ops,
#endif
66 67 68
#if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
	&page_idle_ops,
#endif
69 70 71
};

static unsigned long total_usage;
72
static unsigned long extra_mem;
73 74 75 76 77

static bool __init invoke_need_callbacks(void)
{
	int i;
	int entries = ARRAY_SIZE(page_ext_ops);
78
	bool need = false;
79 80

	for (i = 0; i < entries; i++) {
81 82 83 84 85 86
		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
			page_ext_ops[i]->offset = sizeof(struct page_ext) +
						extra_mem;
			extra_mem += page_ext_ops[i]->size;
			need = true;
		}
87 88
	}

89
	return need;
90 91 92 93 94 95 96 97 98 99 100 101 102
}

static void __init invoke_init_callbacks(void)
{
	int i;
	int entries = ARRAY_SIZE(page_ext_ops);

	for (i = 0; i < entries; i++) {
		if (page_ext_ops[i]->init)
			page_ext_ops[i]->init();
	}
}

103 104 105 106 107 108 109 110 111 112
static unsigned long get_entry_size(void)
{
	return sizeof(struct page_ext) + extra_mem;
}

static inline struct page_ext *get_entry(void *base, unsigned long index)
{
	return base + get_entry_size() * index;
}

113 114 115 116 117 118 119 120 121 122 123
#if !defined(CONFIG_SPARSEMEM)


void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
{
	pgdat->node_page_ext = NULL;
}

struct page_ext *lookup_page_ext(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
124
	unsigned long index;
125 126 127 128 129 130 131 132 133 134 135
	struct page_ext *base;

	base = NODE_DATA(page_to_nid(page))->node_page_ext;
	/*
	 * The sanity checks the page allocator does upon freeing a
	 * page can reach here before the page_ext arrays are
	 * allocated when feeding a range of pages to the allocator
	 * for the first time during bootup or memory hotplug.
	 */
	if (unlikely(!base))
		return NULL;
136
	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
137
					MAX_ORDER_NR_PAGES);
138
	return get_entry(base, index);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
}

static int __init alloc_node_page_ext(int nid)
{
	struct page_ext *base;
	unsigned long table_size;
	unsigned long nr_pages;

	nr_pages = NODE_DATA(nid)->node_spanned_pages;
	if (!nr_pages)
		return 0;

	/*
	 * Need extra space if node range is not aligned with
	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
	 * checks buddy's status, range could be out of exact node range.
	 */
	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
		nr_pages += MAX_ORDER_NR_PAGES;

160
	table_size = get_entry_size() * nr_pages;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

	base = memblock_virt_alloc_try_nid_nopanic(
			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
			BOOTMEM_ALLOC_ACCESSIBLE, nid);
	if (!base)
		return -ENOMEM;
	NODE_DATA(nid)->node_page_ext = base;
	total_usage += table_size;
	return 0;
}

void __init page_ext_init_flatmem(void)
{

	int nid, fail;

	if (!invoke_need_callbacks())
		return;

	for_each_online_node(nid)  {
		fail = alloc_node_page_ext(nid);
		if (fail)
			goto fail;
	}
	pr_info("allocated %ld bytes of page_ext\n", total_usage);
	invoke_init_callbacks();
	return;

fail:
	pr_crit("allocation of page_ext failed.\n");
	panic("Out of memory");
}

#else /* CONFIG_FLAT_NODE_MEM_MAP */

struct page_ext *lookup_page_ext(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	struct mem_section *section = __pfn_to_section(pfn);
	/*
	 * The sanity checks the page allocator does upon freeing a
	 * page can reach here before the page_ext arrays are
	 * allocated when feeding a range of pages to the allocator
	 * for the first time during bootup or memory hotplug.
	 */
	if (!section->page_ext)
		return NULL;
208
	return get_entry(section->page_ext, pfn);
209 210 211 212 213 214 215 216 217 218 219 220 221
}

static void *__meminit alloc_page_ext(size_t size, int nid)
{
	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
	void *addr = NULL;

	addr = alloc_pages_exact_nid(nid, size, flags);
	if (addr) {
		kmemleak_alloc(addr, size, 1, flags);
		return addr;
	}

222
	addr = vzalloc_node(size, nid);
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

	return addr;
}

static int __meminit init_section_page_ext(unsigned long pfn, int nid)
{
	struct mem_section *section;
	struct page_ext *base;
	unsigned long table_size;

	section = __pfn_to_section(pfn);

	if (section->page_ext)
		return 0;

238
	table_size = get_entry_size() * PAGES_PER_SECTION;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	base = alloc_page_ext(table_size, nid);

	/*
	 * The value stored in section->page_ext is (base - pfn)
	 * and it does not point to the memory block allocated above,
	 * causing kmemleak false positives.
	 */
	kmemleak_not_leak(base);

	if (!base) {
		pr_err("page ext allocation failure\n");
		return -ENOMEM;
	}

	/*
	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
	 * we need to apply a mask.
	 */
	pfn &= PAGE_SECTION_MASK;
258
	section->page_ext = (void *)base - get_entry_size() * pfn;
259 260 261 262 263 264 265 266 267 268 269 270
	total_usage += table_size;
	return 0;
}
#ifdef CONFIG_MEMORY_HOTPLUG
static void free_page_ext(void *addr)
{
	if (is_vmalloc_addr(addr)) {
		vfree(addr);
	} else {
		struct page *page = virt_to_page(addr);
		size_t table_size;

271
		table_size = get_entry_size() * PAGES_PER_SECTION;
272 273 274 275 276 277 278 279 280 281 282 283 284 285

		BUG_ON(PageReserved(page));
		free_pages_exact(addr, table_size);
	}
}

static void __free_page_ext(unsigned long pfn)
{
	struct mem_section *ms;
	struct page_ext *base;

	ms = __pfn_to_section(pfn);
	if (!ms || !ms->page_ext)
		return;
286
	base = get_entry(ms->page_ext, pfn);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	free_page_ext(base);
	ms->page_ext = NULL;
}

static int __meminit online_page_ext(unsigned long start_pfn,
				unsigned long nr_pages,
				int nid)
{
	unsigned long start, end, pfn;
	int fail = 0;

	start = SECTION_ALIGN_DOWN(start_pfn);
	end = SECTION_ALIGN_UP(start_pfn + nr_pages);

	if (nid == -1) {
		/*
		 * In this case, "nid" already exists and contains valid memory.
		 * "start_pfn" passed to us is a pfn which is an arg for
		 * online__pages(), and start_pfn should exist.
		 */
		nid = pfn_to_nid(start_pfn);
		VM_BUG_ON(!node_state(nid, N_ONLINE));
	}

	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
		if (!pfn_present(pfn))
			continue;
		fail = init_section_page_ext(pfn, nid);
	}
	if (!fail)
		return 0;

	/* rollback */
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
		__free_page_ext(pfn);

	return -ENOMEM;
}

static int __meminit offline_page_ext(unsigned long start_pfn,
				unsigned long nr_pages, int nid)
{
	unsigned long start, end, pfn;

	start = SECTION_ALIGN_DOWN(start_pfn);
	end = SECTION_ALIGN_UP(start_pfn + nr_pages);

	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
		__free_page_ext(pfn);
	return 0;

}

static int __meminit page_ext_callback(struct notifier_block *self,
			       unsigned long action, void *arg)
{
	struct memory_notify *mn = arg;
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = online_page_ext(mn->start_pfn,
				   mn->nr_pages, mn->status_change_nid);
		break;
	case MEM_OFFLINE:
		offline_page_ext(mn->start_pfn,
				mn->nr_pages, mn->status_change_nid);
		break;
	case MEM_CANCEL_ONLINE:
		offline_page_ext(mn->start_pfn,
				mn->nr_pages, mn->status_change_nid);
		break;
	case MEM_GOING_OFFLINE:
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	return notifier_from_errno(ret);
}

#endif

void __init page_ext_init(void)
{
	unsigned long pfn;
	int nid;

	if (!invoke_need_callbacks())
		return;

	for_each_node_state(nid, N_MEMORY) {
		unsigned long start_pfn, end_pfn;

		start_pfn = node_start_pfn(nid);
		end_pfn = node_end_pfn(nid);
		/*
		 * start_pfn and end_pfn may not be aligned to SECTION and the
		 * page->flags of out of node pages are not initialized.  So we
		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
		 */
		for (pfn = start_pfn; pfn < end_pfn;
			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {

			if (!pfn_valid(pfn))
				continue;
			/*
			 * Nodes's pfns can be overlapping.
			 * We know some arch can have a nodes layout such as
			 * -------------pfn-------------->
			 * N0 | N1 | N2 | N0 | N1 | N2|....
399 400
			 *
			 * Take into account DEFERRED_STRUCT_PAGE_INIT.
401
			 */
402
			if (early_pfn_to_nid(pfn) != nid)
403 404 405
				continue;
			if (init_section_page_ext(pfn, nid))
				goto oom;
406
			cond_resched();
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
		}
	}
	hotplug_memory_notifier(page_ext_callback, 0);
	pr_info("allocated %ld bytes of page_ext\n", total_usage);
	invoke_init_callbacks();
	return;

oom:
	panic("Out of memory");
}

void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
{
}

#endif