slab_common.c 35.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
15 16
#include <linux/cpu.h>
#include <linux/uaccess.h>
17 18
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
19 20 21
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
22
#include <linux/memcontrol.h>
23 24

#define CREATE_TRACE_POINTS
25
#include <trace/events/kmem.h>
26

27 28 29
#include "slab.h"

enum slab_state slab_state;
30 31
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
32
struct kmem_cache *kmem_cache;
33

34 35 36 37 38
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

39 40 41 42
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
43
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
44
		SLAB_FAILSLAB | SLAB_KASAN)
45

46
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
47
			 SLAB_ACCOUNT)
48 49 50 51

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
52
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
53 54 55

static int __init setup_slab_nomerge(char *str)
{
56
	slab_nomerge = true;
57 58 59 60 61 62 63 64 65
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

66 67 68 69 70 71 72 73 74
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

75
#ifdef CONFIG_DEBUG_VM
76
static int kmem_cache_sanity_check(const char *name, size_t size)
77 78 79 80 81
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
82 83
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
84
	}
85

86 87 88 89 90 91 92 93 94 95 96
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
97
			pr_err("Slab cache with size %d has lost its name\n",
98 99 100 101 102 103
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
104 105 106
	return 0;
}
#else
107
static inline int kmem_cache_sanity_check(const char *name, size_t size)
108 109 110
{
	return 0;
}
111 112
#endif

113 114 115 116
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

117 118 119 120 121 122
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
123 124
}

125
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
126 127 128 129 130 131 132 133
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
134
			return 0;
135 136
		}
	}
137
	return i;
138 139
}

140
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
141 142 143

LIST_HEAD(slab_root_caches);

144
void slab_init_memcg_params(struct kmem_cache *s)
145
{
146
	s->memcg_params.root_cache = NULL;
147
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
148
	INIT_LIST_HEAD(&s->memcg_params.children);
149 150 151 152 153 154
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
155

156
	if (root_cache) {
157
		s->memcg_params.root_cache = root_cache;
158 159
		s->memcg_params.memcg = memcg;
		INIT_LIST_HEAD(&s->memcg_params.children_node);
160
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161
		return 0;
162
	}
163

164
	slab_init_memcg_params(s);
165

166 167
	if (!memcg_nr_cache_ids)
		return 0;
168

169 170 171
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
172 173
	if (!arr)
		return -ENOMEM;
174

175
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 177 178
	return 0;
}

179
static void destroy_memcg_params(struct kmem_cache *s)
180
{
181
	if (is_root_cache(s))
182 183 184 185 186 187 188 189 190
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
191 192
}

193
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
194
{
195
	struct memcg_cache_array *old, *new;
196

197 198
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
199
	if (!new)
200 201
		return -ENOMEM;

202 203 204 205 206
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
207

208 209
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
210
		call_rcu(&old->rcu, free_memcg_params);
211 212 213
	return 0;
}

214 215 216 217 218
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

219
	mutex_lock(&slab_mutex);
220
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
221
		ret = update_memcg_params(s, num_memcgs);
222 223 224 225 226
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
227
			break;
228 229 230 231
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
232

233
void memcg_link_cache(struct kmem_cache *s)
234
{
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
253
}
254
#else
255 256
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
257 258 259 260
{
	return 0;
}

261
static inline void destroy_memcg_params(struct kmem_cache *s)
262 263
{
}
264

265
static inline void memcg_unlink_cache(struct kmem_cache *s)
266 267
{
}
268
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
294
		slab_flags_t flags, const char *name, void (*ctor)(void *))
295 296 297
{
	struct kmem_cache *s;

298
	if (slab_nomerge)
299 300 301 302 303 304 305 306 307 308
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

309 310 311
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

312
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

331 332 333 334
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

335 336 337 338 339
		return s;
	}
	return NULL;
}

340 341 342 343
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
344
unsigned long calculate_alignment(slab_flags_t flags,
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

367 368
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
369
		slab_flags_t flags, void (*ctor)(void *),
370
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

386
	err = init_memcg_params(s, memcg, root_cache);
387 388 389 390 391 392 393 394 395
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
396
	memcg_link_cache(s);
397 398 399 400 401 402
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
403
	destroy_memcg_params(s);
404
	kmem_cache_free(kmem_cache, s);
405 406
	goto out;
}
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
432
struct kmem_cache *
433
kmem_cache_create(const char *name, size_t size, size_t align,
434
		  slab_flags_t flags, void (*ctor)(void *))
435
{
436
	struct kmem_cache *s = NULL;
437
	const char *cache_name;
438
	int err;
439

440
	get_online_cpus();
441
	get_online_mems();
442
	memcg_get_cache_ids();
443

444
	mutex_lock(&slab_mutex);
445

446
	err = kmem_cache_sanity_check(name, size);
447
	if (err) {
448
		goto out_unlock;
449
	}
450

451 452 453 454 455 456
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

457 458 459 460 461 462 463
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
464

465 466
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
467
		goto out_unlock;
468

469
	cache_name = kstrdup_const(name, GFP_KERNEL);
470 471 472 473
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
474

475 476 477
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
			 flags, ctor, NULL, NULL);
478 479
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
480
		kfree_const(cache_name);
481
	}
482 483

out_unlock:
484
	mutex_unlock(&slab_mutex);
485

486
	memcg_put_cache_ids();
487
	put_online_mems();
488 489
	put_online_cpus();

490
	if (err) {
491 492 493 494
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
495
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
496 497 498 499 500
				name, err);
			dump_stack();
		}
		return NULL;
	}
501 502
	return s;
}
503
EXPORT_SYMBOL(kmem_cache_create);
504

505
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
506
{
507 508
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
509

510
	/*
511
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
512 513 514 515 516 517 518 519 520 521
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
522

523 524 525 526 527 528 529 530 531 532 533 534
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
535 536
}

537
static int shutdown_cache(struct kmem_cache *s)
538
{
539 540 541
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

542 543
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
544

545
	memcg_unlink_cache(s);
546
	list_del(&s->list);
547

548
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
549 550 551
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
552
#ifdef SLAB_SUPPORTS_SYSFS
553
		sysfs_slab_release(s);
554 555 556 557
#else
		slab_kmem_cache_release(s);
#endif
	}
558 559

	return 0;
560 561
}

562
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
563
/*
564
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
565 566 567 568 569 570 571
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
572 573
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
574
{
575
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
576
	struct cgroup_subsys_state *css = &memcg->css;
577
	struct memcg_cache_array *arr;
578
	struct kmem_cache *s = NULL;
579
	char *cache_name;
580
	int idx;
581 582

	get_online_cpus();
583 584
	get_online_mems();

585 586
	mutex_lock(&slab_mutex);

587
	/*
588
	 * The memory cgroup could have been offlined while the cache
589 590
	 * creation work was pending.
	 */
591
	if (memcg->kmem_state != KMEM_ONLINE)
592 593
		goto out_unlock;

594 595 596 597
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

598 599 600 601 602
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
603
	if (arr->entries[idx])
604 605
		goto out_unlock;

606
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
607 608
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
609 610 611
	if (!cache_name)
		goto out_unlock;

612 613
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
614 615
			 root_cache->flags & CACHE_CREATE_MASK,
			 root_cache->ctor, memcg, root_cache);
616 617 618 619 620
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
621
	if (IS_ERR(s)) {
622
		kfree(cache_name);
623
		goto out_unlock;
624
	}
625

626 627 628 629 630 631
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
632
	arr->entries[idx] = s;
633

634 635
out_unlock:
	mutex_unlock(&slab_mutex);
636 637

	put_online_mems();
638
	put_online_cpus();
639
}
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
static void kmemcg_deactivate_workfn(struct work_struct *work)
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
					    memcg_params.deact_work);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

	s->memcg_params.deact_fn(s);

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
	css_put(&s->memcg_params.memcg->css);
}

static void kmemcg_deactivate_rcufn(struct rcu_head *head)
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
					    memcg_params.deact_rcu_head);

	/*
	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
673
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
}

/**
 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 *					   sched RCU grace period
 * @s: target kmem_cache
 * @deact_fn: deactivation function to call
 *
 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 * held after a sched RCU grace period.  The slab is guaranteed to stay
 * alive until @deact_fn is finished.  This is to be used from
 * __kmemcg_cache_deactivate().
 */
void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
					   void (*deact_fn)(struct kmem_cache *))
{
	if (WARN_ON_ONCE(is_root_cache(s)) ||
	    WARN_ON_ONCE(s->memcg_params.deact_fn))
		return;

	/* pin memcg so that @s doesn't get destroyed in the middle */
	css_get(&s->memcg_params.memcg->css);

	s->memcg_params.deact_fn = deact_fn;
	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
}

701 702 703 704
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
705
	struct kmem_cache *s, *c;
706 707 708

	idx = memcg_cache_id(memcg);

709 710 711
	get_online_cpus();
	get_online_mems();

712
	mutex_lock(&slab_mutex);
713
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
714 715
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
716 717 718 719
		c = arr->entries[idx];
		if (!c)
			continue;

720
		__kmemcg_cache_deactivate(c);
721 722 723
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
724 725 726

	put_online_mems();
	put_online_cpus();
727 728
}

729
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
730
{
731
	struct kmem_cache *s, *s2;
732

733 734
	get_online_cpus();
	get_online_mems();
735 736

	mutex_lock(&slab_mutex);
737 738
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
				 memcg_params.kmem_caches_node) {
739 740 741 742
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
743
		BUG_ON(shutdown_cache(s));
744 745
	}
	mutex_unlock(&slab_mutex);
746

747 748
	put_online_mems();
	put_online_cpus();
749
}
750

751
static int shutdown_memcg_caches(struct kmem_cache *s)
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
770
		if (shutdown_cache(c))
771 772 773 774 775
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
776
			list_move(&c->memcg_params.children_node, &busy);
777 778 779 780 781 782 783 784 785 786 787 788 789 790
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
791 792
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
793
		shutdown_cache(c);
794

795
	list_splice(&busy, &s->memcg_params.children);
796 797 798 799 800

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
801
	if (!list_empty(&s->memcg_params.children))
802 803 804 805
		return -EBUSY;
	return 0;
}
#else
806
static inline int shutdown_memcg_caches(struct kmem_cache *s)
807 808 809
{
	return 0;
}
810
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
811

812 813
void slab_kmem_cache_release(struct kmem_cache *s)
{
814
	__kmem_cache_release(s);
815
	destroy_memcg_params(s);
816
	kfree_const(s->name);
817 818 819
	kmem_cache_free(kmem_cache, s);
}

820 821
void kmem_cache_destroy(struct kmem_cache *s)
{
822
	int err;
823

824 825 826
	if (unlikely(!s))
		return;

827
	get_online_cpus();
828 829
	get_online_mems();

830
	mutex_lock(&slab_mutex);
831

832
	s->refcount--;
833 834 835
	if (s->refcount)
		goto out_unlock;

836
	err = shutdown_memcg_caches(s);
837
	if (!err)
838
		err = shutdown_cache(s);
839

840
	if (err) {
Joe Perches's avatar
Joe Perches committed
841 842
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
843 844
		dump_stack();
	}
845 846
out_unlock:
	mutex_unlock(&slab_mutex);
847

848
	put_online_mems();
849 850 851 852
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

853 854 855 856 857 858 859 860 861 862 863 864 865
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
866
	kasan_cache_shrink(cachep);
867
	ret = __kmem_cache_shrink(cachep);
868 869 870 871 872 873
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

874
bool slab_is_available(void)
875 876 877
{
	return slab_state >= UP;
}
878

879 880 881
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
882
		slab_flags_t flags)
883 884 885 886 887
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
888
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
889 890 891

	slab_init_memcg_params(s);

892 893 894
	err = __kmem_cache_create(s, flags);

	if (err)
895
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
896 897 898 899 900 901
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
902
				slab_flags_t flags)
903 904 905 906 907 908 909 910
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
911
	memcg_link_cache(s);
912 913 914 915
	s->refcount = 1;
	return s;
}

916 917 918 919 920 921 922 923
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

970
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
971
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
972
		return NULL;
973
	}
974

975 976 977 978 979 980 981 982 983
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
984
	if (unlikely((flags & GFP_DMA)))
985 986 987 988 989 990
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

991 992 993 994 995
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
996
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

1013
/*
1014 1015 1016 1017 1018 1019 1020 1021 1022
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1023
 */
1024
void __init setup_kmalloc_cache_index_table(void)
1025 1026 1027
{
	int i;

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1058 1059
}

1060
static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1061 1062 1063 1064 1065
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

1066 1067 1068 1069 1070
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1071
void __init create_kmalloc_caches(slab_flags_t flags)
1072 1073 1074
{
	int i;

1075 1076 1077
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
1078

1079
		/*
1080 1081 1082
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
1083
		 */
1084 1085 1086 1087
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
1088 1089
	}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
1109 1110
#endif /* !CONFIG_SLOB */

1111 1112 1113 1114 1115
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
1116 1117 1118 1119 1120 1121
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1122
	page = alloc_pages(flags, order);
1123 1124
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1125
	kasan_kmalloc_large(ret, size, flags);
1126 1127 1128 1129
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1130 1131 1132 1133 1134 1135 1136 1137 1138
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

1187
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1188 1189 1190 1191 1192 1193
#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1194
static void print_slabinfo_header(struct seq_file *m)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
Joe Perches's avatar
Joe Perches committed
1205
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1206 1207 1208
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
Joe Perches's avatar
Joe Perches committed
1209
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1210 1211 1212 1213 1214
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1215
void *slab_start(struct seq_file *m, loff_t *pos)
1216 1217
{
	mutex_lock(&slab_mutex);
1218
	return seq_list_start(&slab_root_caches, *pos);
1219 1220
}

1221
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1222
{
1223
	return seq_list_next(p, &slab_root_caches, pos);
1224 1225
}

1226
void slab_stop(struct seq_file *m, void *p)
1227 1228 1229 1230
{
	mutex_unlock(&slab_mutex);
}

1231 1232 1233 1234 1235 1236 1237 1238 1239
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1240
	for_each_memcg_cache(c, s) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1252
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1253
{
1254 1255 1256 1257 1258
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1259 1260
	memcg_accumulate_slabinfo(s, &sinfo);

1261
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1262
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1263 1264 1265 1266 1267 1268 1269 1270
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1271 1272
}

1273
static int slab_show(struct seq_file *m, void *p)
1274
{
1275
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1276

1277
	if (p == slab_root_caches.next)
1278
		print_slabinfo_header(m);
1279
	cache_show(s, m);
1280 1281 1282
	return 0;
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

1317
#if defined(CONFIG_MEMCG)
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1338 1339
int memcg_slab_show(struct seq_file *m, void *p)
{
1340 1341
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1342 1343
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

1344
	if (p == memcg->kmem_caches.next)
1345
		print_slabinfo_header(m);
1346
	cache_show(s, m);
1347
	return 0;
1348
}
1349
#endif
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1365
	.start = slab_start,
1366 1367
	.next = slab_next,
	.stop = slab_stop,
1368
	.show = slab_show,
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1386 1387
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1388 1389 1390
	return 0;
}
module_init(slab_proc_init);
1391
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1402
	if (ks >= new_size) {
1403
		kasan_krealloc((void *)p, new_size, flags);
1404
		return (void *)p;
1405
	}
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);