random32.c 12.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * This is a maximally equidistributed combined Tausworthe generator
 * based on code from GNU Scientific Library 1.5 (30 Jun 2004)
 *
 * lfsr113 version:
 *
 * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
 *
 * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
 * s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
 * s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
 * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))
 *
 * The period of this generator is about 2^113 (see erratum paper).
 *
 * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
 * Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
 * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
 * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
 *
 * There is an erratum in the paper "Tables of Maximally Equidistributed
 * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999),
 * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
 *
 *      ... the k_j most significant bits of z_j must be non-zero,
 *      for each j. (Note: this restriction also applies to the
 *      computer code given in [4], but was mistakenly not mentioned
 *      in that paper.)
 *
 * This affects the seeding procedure by imposing the requirement
 * s1 > 1, s2 > 7, s3 > 15, s4 > 127.
 */
34 35 36

#include <linux/types.h>
#include <linux/percpu.h>
37
#include <linux/export.h>
38
#include <linux/jiffies.h>
39
#include <linux/random.h>
40
#include <linux/sched.h>
41
#include <asm/unaligned.h>
42 43 44

#ifdef CONFIG_RANDOM32_SELFTEST
static void __init prandom_state_selftest(void);
45 46 47 48
#else
static inline void prandom_state_selftest(void)
{
}
49
#endif
50

51
static DEFINE_PER_CPU(struct rnd_state, net_rand_state) __latent_entropy;
52

53
/**
54
 *	prandom_u32_state - seeded pseudo-random number generator.
55 56 57
 *	@state: pointer to state structure holding seeded state.
 *
 *	This is used for pseudo-randomness with no outside seeding.
58
 *	For more random results, use prandom_u32().
59
 */
60
u32 prandom_u32_state(struct rnd_state *state)
61
{
62
#define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b)
63 64 65 66
	state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
	state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
	state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
	state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);
67

68
	return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
69
}
70
EXPORT_SYMBOL(prandom_u32_state);
71 72

/**
73
 *	prandom_u32 - pseudo random number generator
74 75 76 77 78
 *
 *	A 32 bit pseudo-random number is generated using a fast
 *	algorithm suitable for simulation. This algorithm is NOT
 *	considered safe for cryptographic use.
 */
79
u32 prandom_u32(void)
80 81
{
	struct rnd_state *state = &get_cpu_var(net_rand_state);
82 83 84
	u32 res;

	res = prandom_u32_state(state);
85
	put_cpu_var(net_rand_state);
86 87

	return res;
88
}
89
EXPORT_SYMBOL(prandom_u32);
90

91
/**
92 93 94 95 96 97 98 99 100
 *	prandom_bytes_state - get the requested number of pseudo-random bytes
 *
 *	@state: pointer to state structure holding seeded state.
 *	@buf: where to copy the pseudo-random bytes to
 *	@bytes: the requested number of bytes
 *
 *	This is used for pseudo-randomness with no outside seeding.
 *	For more random results, use prandom_bytes().
 */
101
void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes)
102
{
103
	u8 *ptr = buf;
104

105 106 107 108
	while (bytes >= sizeof(u32)) {
		put_unaligned(prandom_u32_state(state), (u32 *) ptr);
		ptr += sizeof(u32);
		bytes -= sizeof(u32);
109 110
	}

111 112 113 114 115 116 117
	if (bytes > 0) {
		u32 rem = prandom_u32_state(state);
		do {
			*ptr++ = (u8) rem;
			bytes--;
			rem >>= BITS_PER_BYTE;
		} while (bytes > 0);
118 119 120 121 122 123 124 125 126
	}
}
EXPORT_SYMBOL(prandom_bytes_state);

/**
 *	prandom_bytes - get the requested number of pseudo-random bytes
 *	@buf: where to copy the pseudo-random bytes to
 *	@bytes: the requested number of bytes
 */
127
void prandom_bytes(void *buf, size_t bytes)
128 129 130 131
{
	struct rnd_state *state = &get_cpu_var(net_rand_state);

	prandom_bytes_state(state, buf, bytes);
132
	put_cpu_var(net_rand_state);
133 134 135
}
EXPORT_SYMBOL(prandom_bytes);

136 137
static void prandom_warmup(struct rnd_state *state)
{
138
	/* Calling RNG ten times to satisfy recurrence condition */
139 140 141 142 143 144 145 146 147 148 149 150
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
}

151
static u32 __extract_hwseed(void)
152
{
153
	unsigned int val = 0;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

	(void)(arch_get_random_seed_int(&val) ||
	       arch_get_random_int(&val));

	return val;
}

static void prandom_seed_early(struct rnd_state *state, u32 seed,
			       bool mix_with_hwseed)
{
#define LCG(x)	 ((x) * 69069U)	/* super-duper LCG */
#define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
	state->s1 = __seed(HWSEED() ^ LCG(seed),        2U);
	state->s2 = __seed(HWSEED() ^ LCG(state->s1),   8U);
	state->s3 = __seed(HWSEED() ^ LCG(state->s2),  16U);
	state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
170 171
}

172
/**
173
 *	prandom_seed - add entropy to pseudo random number generator
174 175
 *	@seed: seed value
 *
176
 *	Add some additional seeding to the prandom pool.
177
 */
178
void prandom_seed(u32 entropy)
179
{
180 181 182 183 184
	int i;
	/*
	 * No locking on the CPUs, but then somewhat random results are, well,
	 * expected.
	 */
185
	for_each_possible_cpu(i) {
186
		struct rnd_state *state = &per_cpu(net_rand_state, i);
187 188 189

		state->s1 = __seed(state->s1 ^ entropy, 2U);
		prandom_warmup(state);
190
	}
191
}
192
EXPORT_SYMBOL(prandom_seed);
193 194 195

/*
 *	Generate some initially weak seeding values to allow
196
 *	to start the prandom_u32() engine.
197
 */
198
static int __init prandom_init(void)
199 200 201
{
	int i;

202 203
	prandom_state_selftest();

204
	for_each_possible_cpu(i) {
205
		struct rnd_state *state = &per_cpu(net_rand_state, i);
206
		u32 weak_seed = (i + jiffies) ^ random_get_entropy();
207

208
		prandom_seed_early(state, weak_seed, true);
209
		prandom_warmup(state);
210
	}
211

212 213
	return 0;
}
214
core_initcall(prandom_init);
215

216
static void __prandom_timer(unsigned long dontcare);
217

218 219 220 221 222
static DEFINE_TIMER(seed_timer, __prandom_timer, 0, 0);

static void __prandom_timer(unsigned long dontcare)
{
	u32 entropy;
223
	unsigned long expires;
224 225 226

	get_random_bytes(&entropy, sizeof(entropy));
	prandom_seed(entropy);
227

228
	/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
229
	expires = 40 + prandom_u32_max(40);
230 231
	seed_timer.expires = jiffies + msecs_to_jiffies(expires * MSEC_PER_SEC);

232 233 234
	add_timer(&seed_timer);
}

235
static void __init __prandom_start_seed_timer(void)
236
{
237
	seed_timer.expires = jiffies + msecs_to_jiffies(40 * MSEC_PER_SEC);
238 239 240
	add_timer(&seed_timer);
}

241
void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
{
	int i;

	for_each_possible_cpu(i) {
		struct rnd_state *state = per_cpu_ptr(pcpu_state, i);
		u32 seeds[4];

		get_random_bytes(&seeds, sizeof(seeds));
		state->s1 = __seed(seeds[0],   2U);
		state->s2 = __seed(seeds[1],   8U);
		state->s3 = __seed(seeds[2],  16U);
		state->s4 = __seed(seeds[3], 128U);

		prandom_warmup(state);
	}
}
258
EXPORT_SYMBOL(prandom_seed_full_state);
259

260 261
/*
 *	Generate better values after random number generator
262
 *	is fully initialized.
263
 */
264
static void __prandom_reseed(bool late)
265
{
266 267 268 269
	unsigned long flags;
	static bool latch = false;
	static DEFINE_SPINLOCK(lock);

270 271 272 273 274 275 276 277 278
	/* Asking for random bytes might result in bytes getting
	 * moved into the nonblocking pool and thus marking it
	 * as initialized. In this case we would double back into
	 * this function and attempt to do a late reseed.
	 * Ignore the pointless attempt to reseed again if we're
	 * already waiting for bytes when the nonblocking pool
	 * got initialized.
	 */

279
	/* only allow initial seeding (late == false) once */
280 281 282
	if (!spin_trylock_irqsave(&lock, flags))
		return;

283 284
	if (latch && !late)
		goto out;
285

286
	latch = true;
287
	prandom_seed_full_state(&net_rand_state);
288 289 290 291 292 293 294 295 296 297 298 299
out:
	spin_unlock_irqrestore(&lock, flags);
}

void prandom_reseed_late(void)
{
	__prandom_reseed(true);
}

static int __init prandom_reseed(void)
{
	__prandom_reseed(false);
300
	__prandom_start_seed_timer();
301 302
	return 0;
}
303
late_initcall(prandom_reseed);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

#ifdef CONFIG_RANDOM32_SELFTEST
static struct prandom_test1 {
	u32 seed;
	u32 result;
} test1[] = {
	{ 1U, 3484351685U },
	{ 2U, 2623130059U },
	{ 3U, 3125133893U },
	{ 4U,  984847254U },
};

static struct prandom_test2 {
	u32 seed;
	u32 iteration;
	u32 result;
} test2[] = {
	/* Test cases against taus113 from GSL library. */
	{  931557656U, 959U, 2975593782U },
	{ 1339693295U, 876U, 3887776532U },
	{ 1545556285U, 961U, 1615538833U },
	{  601730776U, 723U, 1776162651U },
	{ 1027516047U, 687U,  511983079U },
	{  416526298U, 700U,  916156552U },
	{ 1395522032U, 652U, 2222063676U },
	{  366221443U, 617U, 2992857763U },
	{ 1539836965U, 714U, 3783265725U },
	{  556206671U, 994U,  799626459U },
	{  684907218U, 799U,  367789491U },
	{ 2121230701U, 931U, 2115467001U },
	{ 1668516451U, 644U, 3620590685U },
	{  768046066U, 883U, 2034077390U },
	{ 1989159136U, 833U, 1195767305U },
	{  536585145U, 996U, 3577259204U },
	{ 1008129373U, 642U, 1478080776U },
	{ 1740775604U, 939U, 1264980372U },
	{ 1967883163U, 508U,   10734624U },
	{ 1923019697U, 730U, 3821419629U },
	{  442079932U, 560U, 3440032343U },
	{ 1961302714U, 845U,  841962572U },
	{ 2030205964U, 962U, 1325144227U },
	{ 1160407529U, 507U,  240940858U },
	{  635482502U, 779U, 4200489746U },
	{ 1252788931U, 699U,  867195434U },
	{ 1961817131U, 719U,  668237657U },
	{ 1071468216U, 983U,  917876630U },
	{ 1281848367U, 932U, 1003100039U },
	{  582537119U, 780U, 1127273778U },
	{ 1973672777U, 853U, 1071368872U },
	{ 1896756996U, 762U, 1127851055U },
	{  847917054U, 500U, 1717499075U },
	{ 1240520510U, 951U, 2849576657U },
	{ 1685071682U, 567U, 1961810396U },
	{ 1516232129U, 557U,    3173877U },
	{ 1208118903U, 612U, 1613145022U },
	{ 1817269927U, 693U, 4279122573U },
	{ 1510091701U, 717U,  638191229U },
	{  365916850U, 807U,  600424314U },
	{  399324359U, 702U, 1803598116U },
	{ 1318480274U, 779U, 2074237022U },
	{  697758115U, 840U, 1483639402U },
	{ 1696507773U, 840U,  577415447U },
	{ 2081979121U, 981U, 3041486449U },
	{  955646687U, 742U, 3846494357U },
	{ 1250683506U, 749U,  836419859U },
	{  595003102U, 534U,  366794109U },
	{   47485338U, 558U, 3521120834U },
	{  619433479U, 610U, 3991783875U },
	{  704096520U, 518U, 4139493852U },
	{ 1712224984U, 606U, 2393312003U },
	{ 1318233152U, 922U, 3880361134U },
	{  855572992U, 761U, 1472974787U },
	{   64721421U, 703U,  683860550U },
	{  678931758U, 840U,  380616043U },
	{  692711973U, 778U, 1382361947U },
	{  677703619U, 530U, 2826914161U },
	{   92393223U, 586U, 1522128471U },
	{ 1222592920U, 743U, 3466726667U },
	{  358288986U, 695U, 1091956998U },
	{ 1935056945U, 958U,  514864477U },
	{  735675993U, 990U, 1294239989U },
	{ 1560089402U, 897U, 2238551287U },
	{   70616361U, 829U,   22483098U },
	{  368234700U, 731U, 2913875084U },
	{   20221190U, 879U, 1564152970U },
	{  539444654U, 682U, 1835141259U },
	{ 1314987297U, 840U, 1801114136U },
	{ 2019295544U, 645U, 3286438930U },
	{  469023838U, 716U, 1637918202U },
	{ 1843754496U, 653U, 2562092152U },
	{  400672036U, 809U, 4264212785U },
	{  404722249U, 965U, 2704116999U },
	{  600702209U, 758U,  584979986U },
	{  519953954U, 667U, 2574436237U },
	{ 1658071126U, 694U, 2214569490U },
	{  420480037U, 749U, 3430010866U },
	{  690103647U, 969U, 3700758083U },
	{ 1029424799U, 937U, 3787746841U },
	{ 2012608669U, 506U, 3362628973U },
	{ 1535432887U, 998U,   42610943U },
	{ 1330635533U, 857U, 3040806504U },
	{ 1223800550U, 539U, 3954229517U },
	{ 1322411537U, 680U, 3223250324U },
	{ 1877847898U, 945U, 2915147143U },
	{ 1646356099U, 874U,  965988280U },
	{  805687536U, 744U, 4032277920U },
	{ 1948093210U, 633U, 1346597684U },
	{  392609744U, 783U, 1636083295U },
	{  690241304U, 770U, 1201031298U },
	{ 1360302965U, 696U, 1665394461U },
	{ 1220090946U, 780U, 1316922812U },
	{  447092251U, 500U, 3438743375U },
	{ 1613868791U, 592U,  828546883U },
	{  523430951U, 548U, 2552392304U },
	{  726692899U, 810U, 1656872867U },
	{ 1364340021U, 836U, 3710513486U },
	{ 1986257729U, 931U,  935013962U },
	{  407983964U, 921U,  728767059U },
};

static void __init prandom_state_selftest(void)
{
	int i, j, errors = 0, runs = 0;
	bool error = false;

	for (i = 0; i < ARRAY_SIZE(test1); i++) {
		struct rnd_state state;

432
		prandom_seed_early(&state, test1[i].seed, false);
433 434 435 436 437 438 439 440 441 442 443 444 445 446
		prandom_warmup(&state);

		if (test1[i].result != prandom_u32_state(&state))
			error = true;
	}

	if (error)
		pr_warn("prandom: seed boundary self test failed\n");
	else
		pr_info("prandom: seed boundary self test passed\n");

	for (i = 0; i < ARRAY_SIZE(test2); i++) {
		struct rnd_state state;

447
		prandom_seed_early(&state, test2[i].seed, false);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
		prandom_warmup(&state);

		for (j = 0; j < test2[i].iteration - 1; j++)
			prandom_u32_state(&state);

		if (test2[i].result != prandom_u32_state(&state))
			errors++;

		runs++;
		cond_resched();
	}

	if (errors)
		pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
	else
		pr_info("prandom: %d self tests passed\n", runs);
}
#endif