rx.c 57.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
16
#include <linux/rcupdate.h>
17 18 19 20 21 22 23 24 25 26
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>

#include "ieee80211_i.h"
#include "ieee80211_led.h"
#include "wep.h"
#include "wpa.h"
#include "tkip.h"
#include "wme.h"

27 28 29 30
u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
				struct tid_ampdu_rx *tid_agg_rx,
				struct sk_buff *skb, u16 mpdu_seq_num,
				int bar_req);
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*
 * monitor mode reception
 *
 * This function cleans up the SKB, i.e. it removes all the stuff
 * only useful for monitoring.
 */
static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
					   struct sk_buff *skb,
					   int rtap_len)
{
	skb_pull(skb, rtap_len);

	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
		if (likely(skb->len > FCS_LEN))
			skb_trim(skb, skb->len - FCS_LEN);
		else {
			/* driver bug */
			WARN_ON(1);
			dev_kfree_skb(skb);
			skb = NULL;
		}
	}

	return skb;
}

static inline int should_drop_frame(struct ieee80211_rx_status *status,
				    struct sk_buff *skb,
				    int present_fcs_len,
				    int radiotap_len)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;

	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
		return 1;
	if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
		return 1;
68 69 70
	if (((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
			cpu_to_le16(IEEE80211_FTYPE_CTL)) &&
	    ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
71 72 73
			cpu_to_le16(IEEE80211_STYPE_PSPOLL)) &&
	    ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
			cpu_to_le16(IEEE80211_STYPE_BACK_REQ)))
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
		return 1;
	return 0;
}

/*
 * This function copies a received frame to all monitor interfaces and
 * returns a cleaned-up SKB that no longer includes the FCS nor the
 * radiotap header the driver might have added.
 */
static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
		     struct ieee80211_rx_status *status)
{
	struct ieee80211_sub_if_data *sdata;
	struct ieee80211_rate *rate;
	int needed_headroom = 0;
90 91 92
	struct ieee80211_radiotap_header *rthdr;
	__le64 *rttsft = NULL;
	struct ieee80211_rtap_fixed_data {
93 94 95 96 97 98 99
		u8 flags;
		u8 rate;
		__le16 chan_freq;
		__le16 chan_flags;
		u8 antsignal;
		u8 padding_for_rxflags;
		__le16 rx_flags;
100
	} __attribute__ ((packed)) *rtfixed;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
	struct sk_buff *skb, *skb2;
	struct net_device *prev_dev = NULL;
	int present_fcs_len = 0;
	int rtap_len = 0;

	/*
	 * First, we may need to make a copy of the skb because
	 *  (1) we need to modify it for radiotap (if not present), and
	 *  (2) the other RX handlers will modify the skb we got.
	 *
	 * We don't need to, of course, if we aren't going to return
	 * the SKB because it has a bad FCS/PLCP checksum.
	 */
	if (status->flag & RX_FLAG_RADIOTAP)
		rtap_len = ieee80211_get_radiotap_len(origskb->data);
	else
117 118
		/* room for radiotap header, always present fields and TSFT */
		needed_headroom = sizeof(*rthdr) + sizeof(*rtfixed) + 8;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
		present_fcs_len = FCS_LEN;

	if (!local->monitors) {
		if (should_drop_frame(status, origskb, present_fcs_len,
				      rtap_len)) {
			dev_kfree_skb(origskb);
			return NULL;
		}

		return remove_monitor_info(local, origskb, rtap_len);
	}

	if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
		/* only need to expand headroom if necessary */
		skb = origskb;
		origskb = NULL;

		/*
		 * This shouldn't trigger often because most devices have an
		 * RX header they pull before we get here, and that should
		 * be big enough for our radiotap information. We should
		 * probably export the length to drivers so that we can have
		 * them allocate enough headroom to start with.
		 */
		if (skb_headroom(skb) < needed_headroom &&
146
		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
			dev_kfree_skb(skb);
			return NULL;
		}
	} else {
		/*
		 * Need to make a copy and possibly remove radiotap header
		 * and FCS from the original.
		 */
		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);

		origskb = remove_monitor_info(local, origskb, rtap_len);

		if (!skb)
			return origskb;
	}

	/* if necessary, prepend radiotap information */
	if (!(status->flag & RX_FLAG_RADIOTAP)) {
165 166 167 168 169 170
		rtfixed = (void *) skb_push(skb, sizeof(*rtfixed));
		rtap_len = sizeof(*rthdr) + sizeof(*rtfixed);
		if (status->flag & RX_FLAG_TSFT) {
			rttsft = (void *) skb_push(skb, sizeof(*rttsft));
			rtap_len += 8;
		}
171 172
		rthdr = (void *) skb_push(skb, sizeof(*rthdr));
		memset(rthdr, 0, sizeof(*rthdr));
173 174
		memset(rtfixed, 0, sizeof(*rtfixed));
		rthdr->it_present =
175 176 177 178 179
			cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
				    (1 << IEEE80211_RADIOTAP_RATE) |
				    (1 << IEEE80211_RADIOTAP_CHANNEL) |
				    (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) |
				    (1 << IEEE80211_RADIOTAP_RX_FLAGS));
180 181 182 183 184 185 186 187 188
		rtfixed->flags = 0;
		if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
			rtfixed->flags |= IEEE80211_RADIOTAP_F_FCS;

		if (rttsft) {
			*rttsft = cpu_to_le64(status->mactime);
			rthdr->it_present |=
				cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
		}
189 190

		/* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
191
		rtfixed->rx_flags = 0;
192 193
		if (status->flag &
		    (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
194
			rtfixed->rx_flags |=
195 196 197 198 199
				cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);

		rate = ieee80211_get_rate(local, status->phymode,
					  status->rate);
		if (rate)
200
			rtfixed->rate = rate->rate / 5;
201

202
		rtfixed->chan_freq = cpu_to_le16(status->freq);
203 204

		if (status->phymode == MODE_IEEE80211A)
205
			rtfixed->chan_flags =
206 207 208
				cpu_to_le16(IEEE80211_CHAN_OFDM |
					    IEEE80211_CHAN_5GHZ);
		else
209
			rtfixed->chan_flags =
210 211 212
				cpu_to_le16(IEEE80211_CHAN_DYN |
					    IEEE80211_CHAN_2GHZ);

213 214
		rtfixed->antsignal = status->ssi;
		rthdr->it_len = cpu_to_le16(rtap_len);
215 216
	}

217
	skb_reset_mac_header(skb);
218 219 220 221 222 223 224 225
	skb->ip_summed = CHECKSUM_UNNECESSARY;
	skb->pkt_type = PACKET_OTHERHOST;
	skb->protocol = htons(ETH_P_802_2);

	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
		if (!netif_running(sdata->dev))
			continue;

226
		if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
			continue;

		if (prev_dev) {
			skb2 = skb_clone(skb, GFP_ATOMIC);
			if (skb2) {
				skb2->dev = prev_dev;
				netif_rx(skb2);
			}
		}

		prev_dev = sdata->dev;
		sdata->dev->stats.rx_packets++;
		sdata->dev->stats.rx_bytes += skb->len;
	}

	if (prev_dev) {
		skb->dev = prev_dev;
		netif_rx(skb);
	} else
		dev_kfree_skb(skb);

	return origskb;
}


252 253 254
/* pre-rx handlers
 *
 * these don't have dev/sdata fields in the rx data
255 256
 * The sta value should also not be used because it may
 * be NULL even though a STA (in IBSS mode) will be added.
257 258
 */

259 260 261 262 263 264 265 266 267 268 269
static ieee80211_txrx_result
ieee80211_rx_h_parse_qos(struct ieee80211_txrx_data *rx)
{
	u8 *data = rx->skb->data;
	int tid;

	/* does the frame have a qos control field? */
	if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
		u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
		/* frame has qos control */
		tid = qc[0] & QOS_CONTROL_TID_MASK;
270
		if (qc[0] & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
271
			rx->flags |= IEEE80211_TXRXD_RX_AMSDU;
272
		else
273
			rx->flags &= ~IEEE80211_TXRXD_RX_AMSDU;
274 275 276 277 278 279 280 281 282
	} else {
		if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
			/* Separate TID for management frames */
			tid = NUM_RX_DATA_QUEUES - 1;
		} else {
			/* no qos control present */
			tid = 0; /* 802.1d - Best Effort */
		}
	}
283

284
	I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
285 286
	/* only a debug counter, sta might not be assigned properly yet */
	if (rx->sta)
287 288 289 290 291 292 293 294 295 296
		I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);

	rx->u.rx.queue = tid;
	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
	 * For now, set skb->priority to 0 for other cases. */
	rx->skb->priority = (tid > 7) ? 0 : tid;

	return TXRX_CONTINUE;
}

297

298
static u32 ieee80211_rx_load_stats(struct ieee80211_local *local,
299 300
			      struct sk_buff *skb,
			      struct ieee80211_rx_status *status)
301 302 303 304 305 306 307 308 309 310 311 312 313 314
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	u32 load = 0, hdrtime;
	struct ieee80211_rate *rate;
	struct ieee80211_hw_mode *mode = local->hw.conf.mode;
	int i;

	/* Estimate total channel use caused by this frame */

	if (unlikely(mode->num_rates < 0))
		return TXRX_CONTINUE;

	rate = &mode->rates[0];
	for (i = 0; i < mode->num_rates; i++) {
315
		if (mode->rates[i].val == status->rate) {
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
			rate = &mode->rates[i];
			break;
		}
	}

	/* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
	 * 1 usec = 1/8 * (1080 / 10) = 13.5 */

	if (mode->mode == MODE_IEEE80211A ||
	    (mode->mode == MODE_IEEE80211G &&
	     rate->flags & IEEE80211_RATE_ERP))
		hdrtime = CHAN_UTIL_HDR_SHORT;
	else
		hdrtime = CHAN_UTIL_HDR_LONG;

	load = hdrtime;
	if (!is_multicast_ether_addr(hdr->addr1))
		load += hdrtime;

	load += skb->len * rate->rate_inv;

	/* Divide channel_use by 8 to avoid wrapping around the counter */
	load >>= CHAN_UTIL_SHIFT;

340
	return load;
341 342
}

343
#ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
344 345 346 347 348
static ieee80211_txrx_result
ieee80211_rx_h_verify_ip_alignment(struct ieee80211_txrx_data *rx)
{
	int hdrlen;

349 350 351
	if (!WLAN_FC_DATA_PRESENT(rx->fc))
		return TXRX_CONTINUE;

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	/*
	 * Drivers are required to align the payload data in a way that
	 * guarantees that the contained IP header is aligned to a four-
	 * byte boundary. In the case of regular frames, this simply means
	 * aligning the payload to a four-byte boundary (because either
	 * the IP header is directly contained, or IV/RFC1042 headers that
	 * have a length divisible by four are in front of it.
	 *
	 * With A-MSDU frames, however, the payload data address must
	 * yield two modulo four because there are 14-byte 802.3 headers
	 * within the A-MSDU frames that push the IP header further back
	 * to a multiple of four again. Thankfully, the specs were sane
	 * enough this time around to require padding each A-MSDU subframe
	 * to a length that is a multiple of four.
	 *
	 * Padding like atheros hardware adds which is inbetween the 802.11
	 * header and the payload is not supported, the driver is required
	 * to move the 802.11 header further back in that case.
	 */
	hdrlen = ieee80211_get_hdrlen(rx->fc);
	if (rx->flags & IEEE80211_TXRXD_RX_AMSDU)
		hdrlen += ETH_HLEN;
	WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);

	return TXRX_CONTINUE;
}
378
#endif
379

380 381 382
ieee80211_rx_handler ieee80211_rx_pre_handlers[] =
{
	ieee80211_rx_h_parse_qos,
383
#ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
384
	ieee80211_rx_h_verify_ip_alignment,
385
#endif
386 387 388 389 390 391 392 393
	NULL
};

/* rx handlers */

static ieee80211_txrx_result
ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
{
394 395
	if (rx->sta)
		rx->sta->channel_use_raw += rx->u.rx.load;
396 397 398 399 400 401 402 403 404 405
	rx->sdata->channel_use_raw += rx->u.rx.load;
	return TXRX_CONTINUE;
}

static ieee80211_txrx_result
ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
{
	struct ieee80211_local *local = rx->local;
	struct sk_buff *skb = rx->skb;

Zhu Yi's avatar
Zhu Yi committed
406 407 408 409 410 411 412 413
	if (unlikely(local->sta_hw_scanning))
		return ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);

	if (unlikely(local->sta_sw_scanning)) {
		/* drop all the other packets during a software scan anyway */
		if (ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status)
		    != TXRX_QUEUED)
			dev_kfree_skb(skb);
414 415 416
		return TXRX_QUEUED;
	}

417
	if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) {
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
		/* scanning finished during invoking of handlers */
		I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
		return TXRX_DROP;
	}

	return TXRX_CONTINUE;
}

static ieee80211_txrx_result
ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
{
	struct ieee80211_hdr *hdr;
	hdr = (struct ieee80211_hdr *) rx->skb->data;

	/* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
	if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
		if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
			     rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
			     hdr->seq_ctrl)) {
437
			if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) {
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
				rx->local->dot11FrameDuplicateCount++;
				rx->sta->num_duplicates++;
			}
			return TXRX_DROP;
		} else
			rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
	}

	if (unlikely(rx->skb->len < 16)) {
		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
		return TXRX_DROP;
	}

	/* Drop disallowed frame classes based on STA auth/assoc state;
	 * IEEE 802.11, Chap 5.5.
	 *
	 * 80211.o does filtering only based on association state, i.e., it
	 * drops Class 3 frames from not associated stations. hostapd sends
	 * deauth/disassoc frames when needed. In addition, hostapd is
	 * responsible for filtering on both auth and assoc states.
	 */
	if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
		      ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
		       (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
462
		     rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
463 464 465 466
		     (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
		if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
		     !(rx->fc & IEEE80211_FCTL_TODS) &&
		     (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
467
		    || !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
468 469 470 471 472
			/* Drop IBSS frames and frames for other hosts
			 * silently. */
			return TXRX_DROP;
		}

473
		return TXRX_DROP;
474 475
	}

476 477 478 479 480
	return TXRX_CONTINUE;
}


static ieee80211_txrx_result
481
ieee80211_rx_h_decrypt(struct ieee80211_txrx_data *rx)
482 483
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
484 485
	int keyidx;
	int hdrlen;
486
	ieee80211_txrx_result result = TXRX_DROP;
487
	struct ieee80211_key *stakey = NULL;
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	/*
	 * Key selection 101
	 *
	 * There are three types of keys:
	 *  - GTK (group keys)
	 *  - PTK (pairwise keys)
	 *  - STK (station-to-station pairwise keys)
	 *
	 * When selecting a key, we have to distinguish between multicast
	 * (including broadcast) and unicast frames, the latter can only
	 * use PTKs and STKs while the former always use GTKs. Unless, of
	 * course, actual WEP keys ("pre-RSNA") are used, then unicast
	 * frames can also use key indizes like GTKs. Hence, if we don't
	 * have a PTK/STK we check the key index for a WEP key.
	 *
504 505 506 507
	 * Note that in a regular BSS, multicast frames are sent by the
	 * AP only, associated stations unicast the frame to the AP first
	 * which then multicasts it on their behalf.
	 *
508 509
	 * There is also a slight problem in IBSS mode: GTKs are negotiated
	 * with each station, that is something we don't currently handle.
510 511 512
	 * The spec seems to expect that one negotiates the same key with
	 * every station but there's no such requirement; VLANs could be
	 * possible.
513 514 515 516
	 */

	if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
		return TXRX_CONTINUE;
517

518
	/*
519
	 * No point in finding a key and decrypting if the frame is neither
520 521
	 * addressed to us nor a multicast frame.
	 */
522
	if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
523 524
		return TXRX_CONTINUE;

525 526 527 528 529
	if (rx->sta)
		stakey = rcu_dereference(rx->sta->key);

	if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
		rx->key = stakey;
530
	} else {
531 532 533 534 535 536 537 538 539
		/*
		 * The device doesn't give us the IV so we won't be
		 * able to look up the key. That's ok though, we
		 * don't need to decrypt the frame, we just won't
		 * be able to keep statistics accurate.
		 * Except for key threshold notifications, should
		 * we somehow allow the driver to tell us which key
		 * the hardware used if this flag is set?
		 */
540 541
		if ((rx->u.rx.status->flag & RX_FLAG_DECRYPTED) &&
		    (rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED))
542 543 544 545 546 547 548 549 550 551 552 553 554
			return TXRX_CONTINUE;

		hdrlen = ieee80211_get_hdrlen(rx->fc);

		if (rx->skb->len < 8 + hdrlen)
			return TXRX_DROP; /* TODO: count this? */

		/*
		 * no need to call ieee80211_wep_get_keyidx,
		 * it verifies a bunch of things we've done already
		 */
		keyidx = rx->skb->data[hdrlen + 3] >> 6;

555
		rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
556 557 558 559 560 561

		/*
		 * RSNA-protected unicast frames should always be sent with
		 * pairwise or station-to-station keys, but for WEP we allow
		 * using a key index as well.
		 */
562
		if (rx->key && rx->key->conf.alg != ALG_WEP &&
563 564
		    !is_multicast_ether_addr(hdr->addr1))
			rx->key = NULL;
565 566
	}

567
	if (rx->key) {
568
		rx->key->tx_rx_count++;
569
		/* TODO: add threshold stuff again */
570
	} else {
571
#ifdef CONFIG_MAC80211_DEBUG
572 573 574
		if (net_ratelimit())
			printk(KERN_DEBUG "%s: RX protected frame,"
			       " but have no key\n", rx->dev->name);
575
#endif /* CONFIG_MAC80211_DEBUG */
576 577 578
		return TXRX_DROP;
	}

579 580 581 582 583 584 585 586
	/* Check for weak IVs if possible */
	if (rx->sta && rx->key->conf.alg == ALG_WEP &&
	    ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
	    (!(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED) ||
	     !(rx->u.rx.status->flag & RX_FLAG_DECRYPTED)) &&
	    ieee80211_wep_is_weak_iv(rx->skb, rx->key))
		rx->sta->wep_weak_iv_count++;

587 588
	switch (rx->key->conf.alg) {
	case ALG_WEP:
589 590
		result = ieee80211_crypto_wep_decrypt(rx);
		break;
591
	case ALG_TKIP:
592 593
		result = ieee80211_crypto_tkip_decrypt(rx);
		break;
594
	case ALG_CCMP:
595 596
		result = ieee80211_crypto_ccmp_decrypt(rx);
		break;
597 598
	}

599 600 601 602
	/* either the frame has been decrypted or will be dropped */
	rx->u.rx.status->flag |= RX_FLAG_DECRYPTED;

	return result;
603 604
}

605 606 607
static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
{
	struct ieee80211_sub_if_data *sdata;
608 609
	DECLARE_MAC_BUF(mac);

610 611 612 613 614 615 616
	sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);

	if (sdata->bss)
		atomic_inc(&sdata->bss->num_sta_ps);
	sta->flags |= WLAN_STA_PS;
	sta->pspoll = 0;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
617 618
	printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
	       dev->name, print_mac(mac, sta->addr), sta->aid);
619 620 621 622 623 624 625 626 627 628
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
}

static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct sk_buff *skb;
	int sent = 0;
	struct ieee80211_sub_if_data *sdata;
	struct ieee80211_tx_packet_data *pkt_data;
629
	DECLARE_MAC_BUF(mac);
630 631 632 633 634 635 636 637 638 639 640 641 642

	sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
	if (sdata->bss)
		atomic_dec(&sdata->bss->num_sta_ps);
	sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
	sta->pspoll = 0;
	if (!skb_queue_empty(&sta->ps_tx_buf)) {
		if (local->ops->set_tim)
			local->ops->set_tim(local_to_hw(local), sta->aid, 0);
		if (sdata->bss)
			bss_tim_clear(local, sdata->bss, sta->aid);
	}
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
643 644
	printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
	       dev->name, print_mac(mac, sta->addr), sta->aid);
645 646 647 648 649
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
	/* Send all buffered frames to the station */
	while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
		pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
		sent++;
650
		pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
651 652 653 654 655 656 657
		dev_queue_xmit(skb);
	}
	while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
		pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
		local->total_ps_buffered--;
		sent++;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
658
		printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
659
		       "since STA not sleeping anymore\n", dev->name,
660
		       print_mac(mac, sta->addr), sta->aid);
661
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
662
		pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		dev_queue_xmit(skb);
	}

	return sent;
}

static ieee80211_txrx_result
ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
{
	struct sta_info *sta = rx->sta;
	struct net_device *dev = rx->dev;
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;

	if (!sta)
		return TXRX_CONTINUE;

	/* Update last_rx only for IBSS packets which are for the current
	 * BSSID to avoid keeping the current IBSS network alive in cases where
	 * other STAs are using different BSSID. */
682
	if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
683 684
		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
						IEEE80211_IF_TYPE_IBSS);
685 686 687 688
		if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
			sta->last_rx = jiffies;
	} else
	if (!is_multicast_ether_addr(hdr->addr1) ||
689
	    rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
690 691 692 693 694 695 696
		/* Update last_rx only for unicast frames in order to prevent
		 * the Probe Request frames (the only broadcast frames from a
		 * STA in infrastructure mode) from keeping a connection alive.
		 */
		sta->last_rx = jiffies;
	}

697
	if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
698 699 700 701
		return TXRX_CONTINUE;

	sta->rx_fragments++;
	sta->rx_bytes += rx->skb->len;
702 703 704
	sta->last_rssi = rx->u.rx.status->ssi;
	sta->last_signal = rx->u.rx.status->signal;
	sta->last_noise = rx->u.rx.status->noise;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

	if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
		/* Change STA power saving mode only in the end of a frame
		 * exchange sequence */
		if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
			rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
		else if (!(sta->flags & WLAN_STA_PS) &&
			 (rx->fc & IEEE80211_FCTL_PM))
			ap_sta_ps_start(dev, sta);
	}

	/* Drop data::nullfunc frames silently, since they are used only to
	 * control station power saving mode. */
	if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
	    (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
		/* Update counter and free packet here to avoid counting this
		 * as a dropped packed. */
		sta->rx_packets++;
		dev_kfree_skb(rx->skb);
		return TXRX_QUEUED;
	}

	return TXRX_CONTINUE;
} /* ieee80211_rx_h_sta_process */

static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
			 unsigned int frag, unsigned int seq, int rx_queue,
			 struct sk_buff **skb)
{
	struct ieee80211_fragment_entry *entry;
	int idx;

	idx = sdata->fragment_next;
	entry = &sdata->fragments[sdata->fragment_next++];
	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
		sdata->fragment_next = 0;

	if (!skb_queue_empty(&entry->skb_list)) {
#ifdef CONFIG_MAC80211_DEBUG
		struct ieee80211_hdr *hdr =
			(struct ieee80211_hdr *) entry->skb_list.next->data;
748 749
		DECLARE_MAC_BUF(mac);
		DECLARE_MAC_BUF(mac2);
750 751
		printk(KERN_DEBUG "%s: RX reassembly removed oldest "
		       "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
752
		       "addr1=%s addr2=%s\n",
753 754
		       sdata->dev->name, idx,
		       jiffies - entry->first_frag_time, entry->seq,
755 756
		       entry->last_frag, print_mac(mac, hdr->addr1),
		       print_mac(mac2, hdr->addr2));
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
#endif /* CONFIG_MAC80211_DEBUG */
		__skb_queue_purge(&entry->skb_list);
	}

	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
	*skb = NULL;
	entry->first_frag_time = jiffies;
	entry->seq = seq;
	entry->rx_queue = rx_queue;
	entry->last_frag = frag;
	entry->ccmp = 0;
	entry->extra_len = 0;

	return entry;
}

static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
			  u16 fc, unsigned int frag, unsigned int seq,
			  int rx_queue, struct ieee80211_hdr *hdr)
{
	struct ieee80211_fragment_entry *entry;
	int i, idx;

	idx = sdata->fragment_next;
	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
		struct ieee80211_hdr *f_hdr;
		u16 f_fc;

		idx--;
		if (idx < 0)
			idx = IEEE80211_FRAGMENT_MAX - 1;

		entry = &sdata->fragments[idx];
		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
		    entry->rx_queue != rx_queue ||
		    entry->last_frag + 1 != frag)
			continue;

		f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
		f_fc = le16_to_cpu(f_hdr->frame_control);

		if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
		    compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
		    compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
			continue;

		if (entry->first_frag_time + 2 * HZ < jiffies) {
			__skb_queue_purge(&entry->skb_list);
			continue;
		}
		return entry;
	}

	return NULL;
}

static ieee80211_txrx_result
ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
{
	struct ieee80211_hdr *hdr;
	u16 sc;
	unsigned int frag, seq;
	struct ieee80211_fragment_entry *entry;
	struct sk_buff *skb;
822
	DECLARE_MAC_BUF(mac);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

	hdr = (struct ieee80211_hdr *) rx->skb->data;
	sc = le16_to_cpu(hdr->seq_ctrl);
	frag = sc & IEEE80211_SCTL_FRAG;

	if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
		   (rx->skb)->len < 24 ||
		   is_multicast_ether_addr(hdr->addr1))) {
		/* not fragmented */
		goto out;
	}
	I802_DEBUG_INC(rx->local->rx_handlers_fragments);

	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;

	if (frag == 0) {
		/* This is the first fragment of a new frame. */
		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
						 rx->u.rx.queue, &(rx->skb));
842
		if (rx->key && rx->key->conf.alg == ALG_CCMP &&
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
		    (rx->fc & IEEE80211_FCTL_PROTECTED)) {
			/* Store CCMP PN so that we can verify that the next
			 * fragment has a sequential PN value. */
			entry->ccmp = 1;
			memcpy(entry->last_pn,
			       rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
			       CCMP_PN_LEN);
		}
		return TXRX_QUEUED;
	}

	/* This is a fragment for a frame that should already be pending in
	 * fragment cache. Add this fragment to the end of the pending entry.
	 */
	entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
					  rx->u.rx.queue, hdr);
	if (!entry) {
		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
		return TXRX_DROP;
	}

	/* Verify that MPDUs within one MSDU have sequential PN values.
	 * (IEEE 802.11i, 8.3.3.4.5) */
	if (entry->ccmp) {
		int i;
		u8 pn[CCMP_PN_LEN], *rpn;
869
		if (!rx->key || rx->key->conf.alg != ALG_CCMP)
870 871 872 873 874 875 876 877 878
			return TXRX_DROP;
		memcpy(pn, entry->last_pn, CCMP_PN_LEN);
		for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
			pn[i]++;
			if (pn[i])
				break;
		}
		rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
		if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
879 880
			if (net_ratelimit())
				printk(KERN_DEBUG "%s: defrag: CCMP PN not "
881
				       "sequential A2=%s"
882 883
				       " PN=%02x%02x%02x%02x%02x%02x "
				       "(expected %02x%02x%02x%02x%02x%02x)\n",
884
				       rx->dev->name, print_mac(mac, hdr->addr2),
885 886 887
				       rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
				       rpn[5], pn[0], pn[1], pn[2], pn[3],
				       pn[4], pn[5]);
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
			return TXRX_DROP;
		}
		memcpy(entry->last_pn, pn, CCMP_PN_LEN);
	}

	skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
	__skb_queue_tail(&entry->skb_list, rx->skb);
	entry->last_frag = frag;
	entry->extra_len += rx->skb->len;
	if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
		rx->skb = NULL;
		return TXRX_QUEUED;
	}

	rx->skb = __skb_dequeue(&entry->skb_list);
	if (skb_tailroom(rx->skb) < entry->extra_len) {
		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
					      GFP_ATOMIC))) {
			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
			__skb_queue_purge(&entry->skb_list);
			return TXRX_DROP;
		}
	}
	while ((skb = __skb_dequeue(&entry->skb_list))) {
		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
		dev_kfree_skb(skb);
	}

	/* Complete frame has been reassembled - process it now */
918
	rx->flags |= IEEE80211_TXRXD_FRAGMENTED;
919 920 921 922 923 924 925 926 927 928 929 930 931 932

 out:
	if (rx->sta)
		rx->sta->rx_packets++;
	if (is_multicast_ether_addr(hdr->addr1))
		rx->local->dot11MulticastReceivedFrameCount++;
	else
		ieee80211_led_rx(rx->local);
	return TXRX_CONTINUE;
}

static ieee80211_txrx_result
ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
{
933
	struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
934 935
	struct sk_buff *skb;
	int no_pending_pkts;
936
	DECLARE_MAC_BUF(mac);
937 938 939 940

	if (likely(!rx->sta ||
		   (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
		   (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
941
		   !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)))
942 943
		return TXRX_CONTINUE;

944 945
	if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
	    (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
946 947
		return TXRX_DROP;

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	skb = skb_dequeue(&rx->sta->tx_filtered);
	if (!skb) {
		skb = skb_dequeue(&rx->sta->ps_tx_buf);
		if (skb)
			rx->local->total_ps_buffered--;
	}
	no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
		skb_queue_empty(&rx->sta->ps_tx_buf);

	if (skb) {
		struct ieee80211_hdr *hdr =
			(struct ieee80211_hdr *) skb->data;

		/* tell TX path to send one frame even though the STA may
		 * still remain is PS mode after this frame exchange */
		rx->sta->pspoll = 1;

#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
966 967
		printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
		       print_mac(mac, rx->sta->addr), rx->sta->aid,
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
		       skb_queue_len(&rx->sta->ps_tx_buf));
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */

		/* Use MoreData flag to indicate whether there are more
		 * buffered frames for this STA */
		if (no_pending_pkts) {
			hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
			rx->sta->flags &= ~WLAN_STA_TIM;
		} else
			hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);

		dev_queue_xmit(skb);

		if (no_pending_pkts) {
			if (rx->local->ops->set_tim)
				rx->local->ops->set_tim(local_to_hw(rx->local),
						       rx->sta->aid, 0);
			if (rx->sdata->bss)
				bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
		}
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
	} else if (!rx->u.rx.sent_ps_buffered) {
990
		printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
991
		       "though there is no buffered frames for it\n",
992
		       rx->dev->name, print_mac(mac, rx->sta->addr));
993 994 995 996 997 998 999 1000 1001 1002 1003
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */

	}

	/* Free PS Poll skb here instead of returning TXRX_DROP that would
	 * count as an dropped frame. */
	dev_kfree_skb(rx->skb);

	return TXRX_QUEUED;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static ieee80211_txrx_result
ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx)
{
	u16 fc = rx->fc;
	u8 *data = rx->skb->data;
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;

	if (!WLAN_FC_IS_QOS_DATA(fc))
		return TXRX_CONTINUE;

	/* remove the qos control field, update frame type and meta-data */
	memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
	hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
	/* change frame type to non QOS */
	rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
	hdr->frame_control = cpu_to_le16(fc);

	return TXRX_CONTINUE;
}

1024
static int
1025
ieee80211_802_1x_port_control(struct ieee80211_txrx_data *rx)
1026
{
1027 1028
	if (unlikely(rx->sdata->ieee802_1x_pac &&
		     (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)))) {
1029
#ifdef CONFIG_MAC80211_DEBUG
1030 1031
		printk(KERN_DEBUG "%s: dropped frame "
		       "(unauthorized port)\n", rx->dev->name);
1032
#endif /* CONFIG_MAC80211_DEBUG */
1033
		return -EACCES;
1034 1035
	}

1036
	return 0;
1037 1038
}

1039
static int
1040
ieee80211_drop_unencrypted(struct ieee80211_txrx_data *rx)
1041
{
1042
	/*
1043 1044
	 * Pass through unencrypted frames if the hardware has
	 * decrypted them already.
1045
	 */
1046
	if (rx->u.rx.status->flag & RX_FLAG_DECRYPTED)
1047
		return 0;
1048 1049 1050 1051 1052

	/* Drop unencrypted frames if key is set. */
	if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
		     (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
		     (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1053
		     (rx->key || rx->sdata->drop_unencrypted))) {
1054 1055 1056
		if (net_ratelimit())
			printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
			       "encryption\n", rx->dev->name);
1057
		return -EACCES;
1058
	}
1059
	return 0;
1060 1061
}

1062 1063
static int
ieee80211_data_to_8023(struct ieee80211_txrx_data *rx)
1064 1065 1066 1067 1068 1069 1070
{
	struct net_device *dev = rx->dev;
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
	u16 fc, hdrlen, ethertype;
	u8 *payload;
	u8 dst[ETH_ALEN];
	u8 src[ETH_ALEN];
1071
	struct sk_buff *skb = rx->skb;
1072
	struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1073 1074 1075 1076
	DECLARE_MAC_BUF(mac);
	DECLARE_MAC_BUF(mac2);
	DECLARE_MAC_BUF(mac3);
	DECLARE_MAC_BUF(mac4);
1077 1078 1079 1080

	fc = rx->fc;

	if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1081
		return -1;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	hdrlen = ieee80211_get_hdrlen(fc);

	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
	 * header
	 * IEEE 802.11 address fields:
	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
	 *   0     0   DA    SA    BSSID n/a
	 *   0     1   DA    BSSID SA    n/a
	 *   1     0   BSSID SA    DA    n/a
	 *   1     1   RA    TA    DA    SA
	 */

	switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
	case IEEE80211_FCTL_TODS:
		/* BSSID SA DA */
		memcpy(dst, hdr->addr3, ETH_ALEN);
		memcpy(src, hdr->addr2, ETH_ALEN);

1101 1102
		if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
			     sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) {
1103 1104
			if (net_ratelimit())
				printk(KERN_DEBUG "%s: dropped ToDS frame "
1105
				       "(BSSID=%s SA=%s DA=%s)\n",
1106
				       dev->name,
1107 1108 1109
				       print_mac(mac, hdr->addr1),
				       print_mac(mac2, hdr->addr2),
				       print_mac(mac3, hdr->addr3));
1110
			return -1;
1111 1112 1113 1114 1115 1116 1117
		}
		break;
	case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
		/* RA TA DA SA */
		memcpy(dst, hdr->addr3, ETH_ALEN);
		memcpy(src, hdr->addr4, ETH_ALEN);

1118
		if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS)) {
1119 1120
			if (net_ratelimit())
				printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
1121
				       "frame (RA=%s TA=%s DA=%s SA=%s)\n",
1122
				       rx->dev->name,
1123 1124 1125 1126
				       print_mac(mac, hdr->addr1),
				       print_mac(mac2, hdr->addr2),
				       print_mac(mac3, hdr->addr3),
				       print_mac(mac4, hdr->addr4));
1127
			return -1;
1128 1129 1130 1131 1132 1133 1134
		}
		break;
	case IEEE80211_FCTL_FROMDS:
		/* DA BSSID SA */
		memcpy(dst, hdr->addr1, ETH_ALEN);
		memcpy(src, hdr->addr3, ETH_ALEN);

1135
		if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1136 1137
		    (is_multicast_ether_addr(dst) &&
		     !compare_ether_addr(src, dev->dev_addr)))
1138
			return -1;
1139 1140 1141 1142 1143 1144
		break;
	case 0:
		/* DA SA BSSID */
		memcpy(dst, hdr->addr1, ETH_ALEN);
		memcpy(src, hdr->addr2, ETH_ALEN);

1145
		if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
1146
			if (net_ratelimit()) {
1147 1148 1149 1150 1151 1152
				printk(KERN_DEBUG "%s: dropped IBSS frame "
				       "(DA=%s SA=%s BSSID=%s)\n",
				       dev->name,
				       print_mac(mac, hdr->addr1),
				       print_mac(mac2, hdr->addr2),
				       print_mac(mac3, hdr->addr3));
1153
			}
1154
			return -1;
1155 1156 1157 1158 1159 1160 1161 1162 1163
		}
		break;
	}

	if (unlikely(skb->len - hdrlen < 8)) {
		if (net_ratelimit()) {
			printk(KERN_DEBUG "%s: RX too short data frame "
			       "payload\n", dev->name);
		}
1164
		return -1;
1165 1166
	}

1167
	payload = skb->data + hdrlen;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	ethertype = (payload[6] << 8) | payload[7];

	if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
		   compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
		/* remove RFC1042 or Bridge-Tunnel encapsulation and
		 * replace EtherType */
		skb_pull(skb, hdrlen + 6);
		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
	} else {
		struct ethhdr *ehdr;
		__be16 len;
1181

1182 1183 1184 1185 1186 1187 1188
		skb_pull(skb, hdrlen);
		len = htons(skb->len);
		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
		memcpy(ehdr->h_dest, dst, ETH_ALEN);
		memcpy(ehdr->h_source, src, ETH_ALEN);
		ehdr->h_proto = len;
	}
1189 1190
	return 0;
}
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/*
 * requires that rx->skb is a frame with ethernet header
 */
static bool ieee80211_frame_allowed(struct ieee80211_txrx_data *rx)
{
	static const u8 pae_group_addr[ETH_ALEN]
		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;

	/*
	 * Allow EAPOL frames to us/the PAE group address regardless
	 * of whether the frame was encrypted or not.
	 */
	if (ehdr->h_proto == htons(ETH_P_PAE) &&
	    (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
	     compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
		return true;

	if (ieee80211_802_1x_port_control(rx) ||
	    ieee80211_drop_unencrypted(rx))
		return false;

	return true;
}

/*
 * requires that rx->skb is a frame with ethernet header
 */
1220 1221 1222 1223 1224 1225 1226
static void
ieee80211_deliver_skb(struct ieee80211_txrx_data *rx)
{
	struct net_device *dev = rx->dev;
	struct ieee80211_local *local = rx->local;
	struct sk_buff *skb, *xmit_skb;
	struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1227 1228
	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
	struct sta_info *dsta;
1229

1230 1231
	skb = rx->skb;
	xmit_skb = NULL;
1232

1233 1234
	if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
				      sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1235
	    (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
1236 1237 1238 1239 1240
		if (is_multicast_ether_addr(ehdr->h_dest)) {
			/*
			 * send multicast frames both to higher layers in
			 * local net stack and back to the wireless medium
			 */
1241 1242
			xmit_skb = skb_copy(skb, GFP_ATOMIC);
			if (!xmit_skb && net_ratelimit())
1243 1244 1245 1246
				printk(KERN_DEBUG "%s: failed to clone "
				       "multicast frame\n", dev->name);
		} else {
			dsta = sta_info_get(local, skb->data);
1247 1248 1249 1250 1251 1252
			if (dsta && dsta->dev == dev) {
				/*
				 * The destination station is associated to
				 * this AP (in this VLAN), so send the frame
				 * directly to it and do not pass it to local
				 * net stack.
1253
				 */
1254
				xmit_skb = skb;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
				skb = NULL;
			}
			if (dsta)
				sta_info_put(dsta);
		}
	}

	if (skb) {
		/* deliver to local stack */
		skb->protocol = eth_type_trans(skb, dev);
		memset(skb->cb, 0, sizeof(skb->cb));
		netif_rx(skb);
	}

1269
	if (xmit_skb) {
1270
		/* send to wireless media */
1271
		xmit_skb->protocol = htons(ETH_P_802_3);
1272 1273
		skb_reset_network_header(xmit_skb);
		skb_reset_mac_header(xmit_skb);
1274
		dev_queue_xmit(xmit_skb);
1275
	}
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
static ieee80211_txrx_result
ieee80211_rx_h_amsdu(struct ieee80211_txrx_data *rx)
{
	struct net_device *dev = rx->dev;
	struct ieee80211_local *local = rx->local;
	u16 fc, ethertype;
	u8 *payload;
	struct sk_buff *skb = rx->skb, *frame = NULL;
	const struct ethhdr *eth;
	int remaining, err;
	u8 dst[ETH_ALEN];
	u8 src[ETH_ALEN];
	DECLARE_MAC_BUF(mac);

	fc = rx->fc;
	if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
		return TXRX_CONTINUE;

	if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
		return TXRX_DROP;

1299
	if (!(rx->flags & IEEE80211_TXRXD_RX_AMSDU))
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		return TXRX_CONTINUE;

	err = ieee80211_data_to_8023(rx);
	if (unlikely(err))
		return TXRX_DROP;

	skb->dev = dev;

	dev->stats.rx_packets++;
	dev->stats.rx_bytes += skb->len;

	/* skip the wrapping header */
	eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
	if (!eth)
		return TXRX_DROP;

	while (skb != frame) {
		u8 padding;
		__be16 len = eth->h_proto;
		unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);

		remaining = skb->len;
		memcpy(dst, eth->h_dest, ETH_ALEN);
		memcpy(src, eth->h_source, ETH_ALEN);

		padding = ((4 - subframe_len) & 0x3);
		/* the last MSDU has no padding */
		if (subframe_len > remaining) {
			printk(KERN_DEBUG "%s: wrong buffer size", dev->name);
			return TXRX_DROP;
		}

		skb_pull(skb, sizeof(struct ethhdr));
		/* if last subframe reuse skb */
		if (remaining <= subframe_len + padding)
			frame = skb;
		else {
			frame = dev_alloc_skb(local->hw.extra_tx_headroom +
					      subframe_len);

			if (frame == NULL)
				return TXRX_DROP;

			skb_reserve(frame, local->hw.extra_tx_headroom +
				    sizeof(struct ethhdr));
			memcpy(skb_put(frame, ntohs(len)), skb->data,
				ntohs(len));

			eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
							padding);
			if (!eth) {
				printk(KERN_DEBUG "%s: wrong buffer size ",
				       dev->name);
				dev_kfree_skb(frame);
				return TXRX_DROP;
			}
		}

1358
		skb_reset_network_header(frame);
1359 1360 1361 1362 1363 1364 1365 1366
		frame->dev = dev;
		frame->priority = skb->priority;
		rx->skb = frame;

		payload = frame->data;
		ethertype = (payload[6] << 8) | payload[7];

		if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1367 1368 1369
			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
			   compare_ether_addr(payload,
					      bridge_tunnel_header) == 0)) {
1370 1371 1372