cfq-iosched.c 106 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
Linus Torvalds's avatar
Linus Torvalds committed
8 9
 */
#include <linux/module.h>
10
#include <linux/slab.h>
Al Viro's avatar
Al Viro committed
11 12
#include <linux/blkdev.h>
#include <linux/elevator.h>
Randy Dunlap's avatar
Randy Dunlap committed
13
#include <linux/jiffies.h>
Linus Torvalds's avatar
Linus Torvalds committed
14
#include <linux/rbtree.h>
15
#include <linux/ioprio.h>
16
#include <linux/blktrace_api.h>
17
#include "cfq.h"
Linus Torvalds's avatar
Linus Torvalds committed
18 19 20 21

/*
 * tunables
 */
22
/* max queue in one round of service */
Shaohua Li's avatar
Shaohua Li committed
23
static const int cfq_quantum = 8;
24
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 26 27 28
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
29
static const int cfq_slice_sync = HZ / 10;
Jens Axboe's avatar
Jens Axboe committed
30
static int cfq_slice_async = HZ / 25;
31
static const int cfq_slice_async_rq = 2;
32
static int cfq_slice_idle = HZ / 125;
33
static int cfq_group_idle = HZ / 125;
34 35
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
36

37
/*
38
 * offset from end of service tree
39
 */
40
#define CFQ_IDLE_DELAY		(HZ / 5)
41 42 43 44 45 46

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

47
#define CFQ_SLICE_SCALE		(5)
48
#define CFQ_HW_QUEUE_MIN	(5)
49
#define CFQ_SERVICE_SHIFT       12
50

51
#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
52
#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
53
#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
54
#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
55

56
#define RQ_CIC(rq)		\
57 58 59
	((struct cfq_io_context *) (rq)->elevator_private[0])
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private[1])
#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elevator_private[2])
Linus Torvalds's avatar
Linus Torvalds committed
60

61 62
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
Linus Torvalds's avatar
Linus Torvalds committed
63

64
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65
static struct completion *ioc_gone;
66
static DEFINE_SPINLOCK(ioc_gone_lock);
67

68 69 70
static DEFINE_SPINLOCK(cic_index_lock);
static DEFINE_IDA(cic_index_ida);

71 72 73 74
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

75
#define sample_valid(samples)	((samples) > 80)
76
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
77

78 79 80 81 82 83 84 85 86
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
87
	unsigned count;
88
	unsigned total_weight;
89
	u64 min_vdisktime;
90
};
91 92
#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_vdisktime = 0, }
93

94 95 96 97 98
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
99
	int ref;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

123 124
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
125
	unsigned int allocated_slice;
126
	unsigned int slice_dispatch;
127 128
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
129 130 131 132 133 134 135 136
	unsigned long slice_end;
	long slice_resid;

	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
137
	unsigned short ioprio_class;
138

139 140
	pid_t pid;

141
	u32 seek_history;
142 143
	sector_t last_request_pos;

144
	struct cfq_rb_root *service_tree;
Jeff Moyer's avatar
Jeff Moyer committed
145
	struct cfq_queue *new_cfqq;
146
	struct cfq_group *cfqg;
147 148
	/* Number of sectors dispatched from queue in single dispatch round */
	unsigned long nr_sectors;
149 150
};

151
/*
152
 * First index in the service_trees.
153 154 155 156
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
157 158
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
159
	CFQ_PRIO_NR,
160 161
};

162 163 164 165 166 167 168 169 170
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

171 172
/* This is per cgroup per device grouping structure */
struct cfq_group {
173 174 175 176 177
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
178
	unsigned int weight;
179 180
	unsigned int new_weight;
	bool needs_update;
181 182 183 184

	/* number of cfqq currently on this group */
	int nr_cfqq;

185
	/*
186
	 * Per group busy queues average. Useful for workload slice calc. We
187 188 189 190 191 192 193 194 195 196 197
	 * create the array for each prio class but at run time it is used
	 * only for RT and BE class and slot for IDLE class remains unused.
	 * This is primarily done to avoid confusion and a gcc warning.
	 */
	unsigned int busy_queues_avg[CFQ_PRIO_NR];
	/*
	 * rr lists of queues with requests. We maintain service trees for
	 * RT and BE classes. These trees are subdivided in subclasses
	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
	 * class there is no subclassification and all the cfq queues go on
	 * a single tree service_tree_idle.
198 199 200 201
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
202 203 204 205

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
206 207 208
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
209
	int ref;
210
#endif
211 212
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;
213
};
214

215 216 217
/*
 * Per block device queue structure
 */
Linus Torvalds's avatar
Linus Torvalds committed
218
struct cfq_data {
219
	struct request_queue *queue;
220 221
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
222
	struct cfq_group root_group;
223

224 225
	/*
	 * The priority currently being served
226
	 */
227
	enum wl_prio_t serving_prio;
228 229
	enum wl_type_t serving_type;
	unsigned long workload_expires;
230
	struct cfq_group *serving_group;
231 232 233 234 235 236 237 238

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

239
	unsigned int busy_queues;
240
	unsigned int busy_sync_queues;
241

242 243
	int rq_in_driver;
	int rq_in_flight[2];
244 245 246 247 248

	/*
	 * queue-depth detection
	 */
	int rq_queued;
249
	int hw_tag;
250 251 252 253 254 255 256 257
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
Linus Torvalds's avatar
Linus Torvalds committed
258

259 260 261 262
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
263
	struct work_struct unplug_work;
Linus Torvalds's avatar
Linus Torvalds committed
264

265 266 267
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

268 269 270 271 272
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
273

Jens Axboe's avatar
Jens Axboe committed
274
	sector_t last_position;
Linus Torvalds's avatar
Linus Torvalds committed
275 276 277 278 279

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
280
	unsigned int cfq_fifo_expire[2];
Linus Torvalds's avatar
Linus Torvalds committed
281 282
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
283 284 285
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
286
	unsigned int cfq_group_idle;
287
	unsigned int cfq_latency;
288

289
	unsigned int cic_index;
290
	struct list_head cic_list;
Linus Torvalds's avatar
Linus Torvalds committed
291

292 293 294 295
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
296

297
	unsigned long last_delayed_sync;
298 299 300

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
301 302 303

	/* Number of groups which are on blkcg->blkg_list */
	unsigned int nr_blkcg_linked_grps;
Linus Torvalds's avatar
Linus Torvalds committed
304 305
};

306 307
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

308 309
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
310
					    enum wl_type_t type)
311
{
312 313 314
	if (!cfqg)
		return NULL;

315
	if (prio == IDLE_WORKLOAD)
316
		return &cfqg->service_tree_idle;
317

318
	return &cfqg->service_trees[prio][type];
319 320
}

Jens Axboe's avatar
Jens Axboe committed
321
enum cfqq_state_flags {
322 323
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
324
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
325 326 327 328
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
329
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
330
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
331
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
332
	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
333
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
334
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
Jens Axboe's avatar
Jens Axboe committed
335 336 337 338 339
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
340
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
Jens Axboe's avatar
Jens Axboe committed
341 342 343
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
344
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
Jens Axboe's avatar
Jens Axboe committed
345 346 347
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
348
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
Jens Axboe's avatar
Jens Axboe committed
349 350 351 352
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
353
CFQ_CFQQ_FNS(must_dispatch);
Jens Axboe's avatar
Jens Axboe committed
354 355 356 357
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
358
CFQ_CFQQ_FNS(slice_new);
359
CFQ_CFQQ_FNS(sync);
360
CFQ_CFQQ_FNS(coop);
361
CFQ_CFQQ_FNS(split_coop);
362
CFQ_CFQQ_FNS(deep);
363
CFQ_CFQQ_FNS(wait_busy);
Jens Axboe's avatar
Jens Axboe committed
364 365
#undef CFQ_CFQQ_FNS

366
#ifdef CONFIG_CFQ_GROUP_IOSCHED
367 368 369
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
370
			blkg_path(&(cfqq)->cfqg->blkg), ##args)
371 372 373

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
374
				blkg_path(&(cfqg)->blkg), ##args)       \
375 376

#else
377 378
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
379
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
380
#endif
381 382 383
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

384 385 386 387 388 389 390 391 392 393 394
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static inline bool iops_mode(struct cfq_data *cfqd)
{
	/*
	 * If we are not idling on queues and it is a NCQ drive, parallel
	 * execution of requests is on and measuring time is not possible
	 * in most of the cases until and unless we drive shallower queue
	 * depths and that becomes a performance bottleneck. In such cases
	 * switch to start providing fairness in terms of number of IOs.
	 */
	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
		return true;
	else
		return false;
}

410 411 412 413 414 415 416 417 418
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

419 420 421 422 423 424 425 426 427 428

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

429 430 431
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
432 433
{
	if (wl == IDLE_WORKLOAD)
434
		return cfqg->service_tree_idle.count;
435

436 437 438
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
439 440
}

441 442 443 444 445 446 447
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

448
static void cfq_dispatch_insert(struct request_queue *, struct request *);
449
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
450
				       struct io_context *, gfp_t);
451
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
452 453 454
						struct io_context *);

static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
455
					    bool is_sync)
456
{
457
	return cic->cfqq[is_sync];
458 459 460
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
461
				struct cfq_queue *cfqq, bool is_sync)
462
{
463
	cic->cfqq[is_sync] = cfqq;
464 465
}

466
#define CIC_DEAD_KEY	1ul
467
#define CIC_DEAD_INDEX_SHIFT	1
468 469 470

static inline void *cfqd_dead_key(struct cfq_data *cfqd)
{
471
	return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
472 473 474 475 476 477 478 479 480 481 482 483
}

static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
{
	struct cfq_data *cfqd = cic->key;

	if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
		return NULL;

	return cfqd;
}

484 485 486 487
/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
488
static inline bool cfq_bio_sync(struct bio *bio)
489
{
490
	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
491
}
Linus Torvalds's avatar
Linus Torvalds committed
492

Andrew Morton's avatar
Andrew Morton committed
493 494 495 496
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
497
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
Andrew Morton's avatar
Andrew Morton committed
498
{
499 500
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
501
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
502
	}
Andrew Morton's avatar
Andrew Morton committed
503 504
}

505 506 507 508 509
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
510
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
511
				 unsigned short prio)
512
{
513
	const int base_slice = cfqd->cfq_slice[sync];
514

515 516 517 518
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
519

520 521 522 523
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
524 525
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	struct cfq_group *cfqg;

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
559 560
		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
						  cfqg->vdisktime);
561 562 563
	}
}

564 565 566 567 568 569
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

570 571
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
572
{
573 574 575
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
576
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
577

578 579 580
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
581
		cfq_hist_divisor;
582 583 584 585 586 587 588 589 590
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
591 592
}

593
static inline unsigned
594
cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
595
{
596 597
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
598 599 600 601 602 603
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
604 605
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
606 607 608
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
609 610 611 612 613 614 615
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
616
			slice = max(slice * group_slice / expect_latency,
617 618 619
				    low_slice);
		}
	}
620 621 622 623 624 625
	return slice;
}

static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
626
	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
627

628
	cfqq->slice_start = jiffies;
629
	cfqq->slice_end = jiffies + slice;
630
	cfqq->allocated_slice = slice;
631
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
632 633 634 635 636 637 638
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
639
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
640 641
{
	if (cfq_cfqq_slice_new(cfqq))
Shaohua Li's avatar
Shaohua Li committed
642
		return false;
643
	if (time_before(jiffies, cfqq->slice_end))
Shaohua Li's avatar
Shaohua Li committed
644
		return false;
645

Shaohua Li's avatar
Shaohua Li committed
646
	return true;
647 648
}

Linus Torvalds's avatar
Linus Torvalds committed
649
/*
Jens Axboe's avatar
Jens Axboe committed
650
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
Linus Torvalds's avatar
Linus Torvalds committed
651
 * We choose the request that is closest to the head right now. Distance
652
 * behind the head is penalized and only allowed to a certain extent.
Linus Torvalds's avatar
Linus Torvalds committed
653
 */
Jens Axboe's avatar
Jens Axboe committed
654
static struct request *
655
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
Linus Torvalds's avatar
Linus Torvalds committed
656
{
657
	sector_t s1, s2, d1 = 0, d2 = 0;
Linus Torvalds's avatar
Linus Torvalds committed
658
	unsigned long back_max;
659 660 661
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
Linus Torvalds's avatar
Linus Torvalds committed
662

Jens Axboe's avatar
Jens Axboe committed
663 664 665 666
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
667

668 669 670
	if (rq_is_sync(rq1) != rq_is_sync(rq2))
		return rq_is_sync(rq1) ? rq1 : rq2;

671 672
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
Linus Torvalds's avatar
Linus Torvalds committed
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
689
		wrap |= CFQ_RQ1_WRAP;
Linus Torvalds's avatar
Linus Torvalds committed
690 691 692 693 694 695

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
696
		wrap |= CFQ_RQ2_WRAP;
Linus Torvalds's avatar
Linus Torvalds committed
697 698

	/* Found required data */
699 700 701 702 703 704

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
Jens Axboe's avatar
Jens Axboe committed
705
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
706
		if (d1 < d2)
Jens Axboe's avatar
Jens Axboe committed
707
			return rq1;
708
		else if (d2 < d1)
Jens Axboe's avatar
Jens Axboe committed
709
			return rq2;
710 711
		else {
			if (s1 >= s2)
Jens Axboe's avatar
Jens Axboe committed
712
				return rq1;
713
			else
Jens Axboe's avatar
Jens Axboe committed
714
				return rq2;
715
		}
Linus Torvalds's avatar
Linus Torvalds committed
716

717
	case CFQ_RQ2_WRAP:
Jens Axboe's avatar
Jens Axboe committed
718
		return rq1;
719
	case CFQ_RQ1_WRAP:
Jens Axboe's avatar
Jens Axboe committed
720 721
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
722 723 724 725 726 727 728 729
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
Jens Axboe's avatar
Jens Axboe committed
730
			return rq1;
Linus Torvalds's avatar
Linus Torvalds committed
731
		else
Jens Axboe's avatar
Jens Axboe committed
732
			return rq2;
Linus Torvalds's avatar
Linus Torvalds committed
733 734 735
	}
}

736 737 738
/*
 * The below is leftmost cache rbtree addon
 */
739
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
740
{
741 742 743 744
	/* Service tree is empty */
	if (!root->count)
		return NULL;

745 746 747
	if (!root->left)
		root->left = rb_first(&root->rb);

748 749 750 751
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
752 753
}

754 755 756 757 758 759 760 761 762 763 764
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

765 766 767 768 769 770
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

771 772 773 774
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
775
	rb_erase_init(n, &root->rb);
776
	--root->count;
777 778
}

Linus Torvalds's avatar
Linus Torvalds committed
779 780 781
/*
 * would be nice to take fifo expire time into account as well
 */
Jens Axboe's avatar
Jens Axboe committed
782 783 784
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
Linus Torvalds's avatar
Linus Torvalds committed
785
{
786 787
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
Jens Axboe's avatar
Jens Axboe committed
788
	struct request *next = NULL, *prev = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
789

790
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
Linus Torvalds's avatar
Linus Torvalds committed
791 792

	if (rbprev)
Jens Axboe's avatar
Jens Axboe committed
793
		prev = rb_entry_rq(rbprev);
Linus Torvalds's avatar
Linus Torvalds committed
794

795
	if (rbnext)
Jens Axboe's avatar
Jens Axboe committed
796
		next = rb_entry_rq(rbnext);
797 798 799
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
Jens Axboe's avatar
Jens Axboe committed
800
			next = rb_entry_rq(rbnext);
801
	}
Linus Torvalds's avatar
Linus Torvalds committed
802

803
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
Linus Torvalds's avatar
Linus Torvalds committed
804 805
}

806 807
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
Linus Torvalds's avatar
Linus Torvalds committed
808
{
809 810 811
	/*
	 * just an approximation, should be ok.
	 */
812
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
813
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
814 815
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
cfq_update_group_weight(struct cfq_group *cfqg)
{
	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
	if (cfqg->needs_update) {
		cfqg->weight = cfqg->new_weight;
		cfqg->needs_update = false;
	}
}

static void
cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));

	cfq_update_group_weight(cfqg);
	__cfq_group_service_tree_add(st, cfqg);
	st->total_weight += cfqg->weight;
}

static void
cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
872 873 874 875 876 877
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
878
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
879 880 881 882 883
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
Lucas De Marchi's avatar
Lucas De Marchi committed
884
	 * if group does not loose all if it was not continuously backlogged.
885 886 887 888 889 890 891
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;
892 893
	cfq_group_service_tree_add(st, cfqg);
}
894

895 896 897 898 899 900
static void
cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	st->total_weight -= cfqg->weight;
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
901 902 903
}

static void
904
cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
905 906 907 908 909
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
910

911 912 913 914
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

915
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
916
	cfq_group_service_tree_del(st, cfqg);
917
	cfqg->saved_workload_slice = 0;
918
	cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
919 920
}

921 922
static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
						unsigned int *unaccounted_time)
923
{
924
	unsigned int slice_used;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
941 942
		if (slice_used > cfqq->allocated_slice) {
			*unaccounted_time = slice_used - cfqq->allocated_slice;
943
			slice_used = cfqq->allocated_slice;
944 945 946 947
		}
		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
			*unaccounted_time += cfqq->slice_start -
					cfqq->dispatch_start;
948 949 950 951 952 953
	}

	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
954
				struct cfq_queue *cfqq)
955 956
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
957
	unsigned int used_sl, charge, unaccounted_sl = 0;
958 959 960 961
	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
			- cfqg->service_tree_idle.count;

	BUG_ON(nr_sync < 0);
962
	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
963

964 965 966 967
	if (iops_mode(cfqd))
		charge = cfqq->slice_dispatch;
	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
		charge = cfqq->allocated_slice;
968 969

	/* Can't update vdisktime while group is on service tree */
970
	cfq_group_service_tree_del(st, cfqg);
971
	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
972 973
	/* If a new weight was requested, update now, off tree */
	cfq_group_service_tree_add(st, cfqg);
974 975 976 977 978 979 980 981 982

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
983 984 985

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
986 987 988 989
	cfq_log_cfqq(cfqq->cfqd, cfqq,
		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
		     used_sl, cfqq->slice_dispatch, charge,
		     iops_mode(cfqd), cfqq->nr_sectors);
990 991
	cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
					  unaccounted_sl);
992
	cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
993 994
}

995 996 997 998 999 1000 1001 1002
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

Paul Bolle's avatar
Paul Bolle committed
1003 1004
static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
					  unsigned int weight)
1005
{
1006 1007 1008
	struct cfq_group *cfqg = cfqg_of_blkg(blkg);
	cfqg->new_weight = weight;
	cfqg->needs_update = true;
1009 1010
}

1011 1012
static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
			struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1013
{
1014 1015
	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
	unsigned int major, minor;
1016

1017 1018 1019 1020 1021 1022 1023
	/*
	 * Add group onto cgroup list. It might happen that bdi->dev is
	 * not initialized yet. Initialize this new group without major
	 * and minor info and this info will be filled in once a new thread
	 * comes for IO.
	 */
	if (bdi->dev) {
1024
		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
					(void *)cfqd, MKDEV(major, minor));
	} else
		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
					(void *)cfqd, 0);

	cfqd->nr_blkcg_linked_grps++;
	cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
}

/*
 * Should be called from sleepable context. No request queue lock as per
 * cpu stats are allocated dynamically and alloc_percpu needs to be called
 * from sleepable context.
 */
static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
{
	struct cfq_group *cfqg = NULL;
1046
	int i, j, ret;