cpuset.c 76.7 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
7
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
Linus Torvalds's avatar
Linus Torvalds committed
8 9 10 11
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
12
 *  2003-10-10 Written by Simon Derr.
Linus Torvalds's avatar
Linus Torvalds committed
13
 *  2003-10-22 Updates by Stephen Hemminger.
14
 *  2004 May-July Rework by Paul Jackson.
Linus Torvalds's avatar
Linus Torvalds committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
33
#include <linux/mempolicy.h>
Linus Torvalds's avatar
Linus Torvalds committed
34 35 36 37 38 39
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
40
#include <linux/rcupdate.h>
Linus Torvalds's avatar
Linus Torvalds committed
41 42
#include <linux/sched.h>
#include <linux/seq_file.h>
43
#include <linux/security.h>
Linus Torvalds's avatar
Linus Torvalds committed
44 45 46 47 48 49 50 51 52 53
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
54
#include <linux/mutex.h>
Linus Torvalds's avatar
Linus Torvalds committed
55

56
#define CPUSET_SUPER_MAGIC		0x27e0eb
Linus Torvalds's avatar
Linus Torvalds committed
57

58 59 60 61 62
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
63
int number_of_cpusets __read_mostly;
64

65 66 67 68 69 70 71 72 73
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

Linus Torvalds's avatar
Linus Torvalds committed
74 75 76 77 78
struct cpuset {
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

79 80 81
	/*
	 * Count is atomic so can incr (fork) or decr (exit) without a lock.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
	atomic_t count;			/* count tasks using this cpuset */

	/*
	 * We link our 'sibling' struct into our parents 'children'.
	 * Our children link their 'sibling' into our 'children'.
	 */
	struct list_head sibling;	/* my parents children */
	struct list_head children;	/* my children */

	struct cpuset *parent;		/* my parent */
	struct dentry *dentry;		/* cpuset fs entry */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
98 99 100
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
Linus Torvalds's avatar
Linus Torvalds committed
101 102 103 104 105 106
};

/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
107
	CS_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
108
	CS_REMOVED,
109 110 111
	CS_NOTIFY_ON_RELEASE,
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
112 113 114 115 116
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
117
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
118 119 120 121
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
122
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
123 124 125 126
}

static inline int is_removed(const struct cpuset *cs)
{
127
	return test_bit(CS_REMOVED, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
128 129 130 131
}

static inline int notify_on_release(const struct cpuset *cs)
{
132
	return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
133 134
}

135 136
static inline int is_memory_migrate(const struct cpuset *cs)
{
137
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
138 139
}

140 141 142 143 144 145 146 147 148 149
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

Linus Torvalds's avatar
Linus Torvalds committed
150
/*
151
 * Increment this integer everytime any cpuset changes its
Linus Torvalds's avatar
Linus Torvalds committed
152 153 154 155 156 157 158 159 160 161 162 163 164
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
 * A single, global generation is needed because attach_task() could
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
 * modify anothers memory placement.  So we must enable every task,
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
165 166 167
 *
 * Since cpuset_mems_generation is guarded by manage_mutex,
 * there is no need to mark it atomic.
Linus Torvalds's avatar
Linus Torvalds committed
168
 */
169
static int cpuset_mems_generation;
Linus Torvalds's avatar
Linus Torvalds committed
170 171 172 173 174 175 176 177 178 179 180

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
	.count = ATOMIC_INIT(0),
	.sibling = LIST_HEAD_INIT(top_cpuset.sibling),
	.children = LIST_HEAD_INIT(top_cpuset.children),
};

static struct vfsmount *cpuset_mount;
181
static struct super_block *cpuset_sb;
Linus Torvalds's avatar
Linus Torvalds committed
182 183

/*
184 185
 * We have two global cpuset mutexes below.  They can nest.
 * It is ok to first take manage_mutex, then nest callback_mutex.  We also
186 187 188
 * require taking task_lock() when dereferencing a tasks cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
189 190 191
 * A task must hold both mutexes to modify cpusets.  If a task
 * holds manage_mutex, then it blocks others wanting that mutex,
 * ensuring that it is the only task able to also acquire callback_mutex
192 193
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
194
 * also allocate memory while just holding manage_mutex.  While it is
195
 * performing these checks, various callback routines can briefly
196 197
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
198 199
 *
 * Calls to the kernel memory allocator can not be made while holding
200
 * callback_mutex, as that would risk double tripping on callback_mutex
201 202 203
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
204
 * If a task is only holding callback_mutex, then it has read-only
205 206 207 208 209 210
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * Any task can increment and decrement the count field without lock.
211
 * So in general, code holding manage_mutex or callback_mutex can't rely
212
 * on the count field not changing.  However, if the count goes to
213
 * zero, then only attach_task(), which holds both mutexes, can
214 215 216
 * increment it again.  Because a count of zero means that no tasks
 * are currently attached, therefore there is no way a task attached
 * to that cpuset can fork (the other way to increment the count).
217
 * So code holding manage_mutex or callback_mutex can safely assume that
218
 * if the count is zero, it will stay zero.  Similarly, if a task
219
 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
220
 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
221
 * both of those mutexes.
222 223
 *
 * The cpuset_common_file_write handler for operations that modify
224
 * the cpuset hierarchy holds manage_mutex across the entire operation,
225 226
 * single threading all such cpuset modifications across the system.
 *
227
 * The cpuset_common_file_read() handlers only hold callback_mutex across
228 229 230 231
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
232
 * (usually) take either mutex.  These are the two most performance
233
 * critical pieces of code here.  The exception occurs on cpuset_exit(),
234
 * when a task in a notify_on_release cpuset exits.  Then manage_mutex
235
 * is taken, and if the cpuset count is zero, a usermode call made
Linus Torvalds's avatar
Linus Torvalds committed
236 237 238
 * to /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
239 240 241
 * A cpuset can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cpusets is empty.  Since all
 * tasks in the system use _some_ cpuset, and since there is always at
242
 * least one task in the system (init), therefore, top_cpuset
243 244 245 246 247 248 249 250 251
 * always has either children cpusets and/or using tasks.  So we don't
 * need a special hack to ensure that top_cpuset cannot be deleted.
 *
 * The above "Tale of Two Semaphores" would be complete, but for:
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of attach_task(),
 * which overwrites one tasks cpuset pointer with another.  It does
252
 * so using both mutexes, however there are several performance
253
 * critical places that need to reference task->cpuset without the
254
 * expense of grabbing a system global mutex.  Therefore except as
255 256 257 258
 * noted below, when dereferencing or, as in attach_task(), modifying
 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
 * (task->alloc_lock) already in the task_struct routinely used for
 * such matters.
259 260 261 262 263
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cpuset pointer by attach_task() and the
 * access of task->cpuset->mems_generation via that pointer in
 * the routine cpuset_update_task_memory_state().
Linus Torvalds's avatar
Linus Torvalds committed
264 265
 */

266 267
static DEFINE_MUTEX(manage_mutex);
static DEFINE_MUTEX(callback_mutex);
268

Linus Torvalds's avatar
Linus Torvalds committed
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * A couple of forward declarations required, due to cyclic reference loop:
 *  cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
 *  -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
 */

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);

static struct backing_dev_info cpuset_backing_dev_info = {
	.ra_pages = 0,		/* No readahead */
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};

static struct inode *cpuset_new_inode(mode_t mode)
{
	struct inode *inode = new_inode(cpuset_sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
	}
	return inode;
}

static void cpuset_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cpuset */
	if (S_ISDIR(inode->i_mode)) {
		struct cpuset *cs = dentry->d_fsdata;
		BUG_ON(!(is_removed(cs)));
		kfree(cs);
	}
	iput(inode);
}

static struct dentry_operations cpuset_dops = {
	.d_iput = cpuset_diput,
};

static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
{
315
	struct dentry *d = lookup_one_len(name, parent, strlen(name));
Linus Torvalds's avatar
Linus Torvalds committed
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	if (!IS_ERR(d))
		d->d_op = &cpuset_dops;
	return d;
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cpuset_d_remove_dir(struct dentry *dentry)
{
	struct list_head *node;

	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
Eric Dumazet's avatar
Eric Dumazet committed
340
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
Linus Torvalds's avatar
Linus Torvalds committed
341 342 343 344 345 346 347 348 349 350 351
		list_del_init(node);
		if (d->d_inode) {
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
Eric Dumazet's avatar
Eric Dumazet committed
352
	list_del_init(&dentry->d_u.d_child);
Linus Torvalds's avatar
Linus Torvalds committed
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static struct super_operations cpuset_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
};

static int cpuset_fill_super(struct super_block *sb, void *unused_data,
							int unused_silent)
{
	struct inode *inode;
	struct dentry *root;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CPUSET_SUPER_MAGIC;
	sb->s_op = &cpuset_ops;
	cpuset_sb = sb;

	inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
	if (inode) {
		inode->i_op = &simple_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;
		/* directories start off with i_nlink == 2 (for "." entry) */
379
		inc_nlink(inode);
Linus Torvalds's avatar
Linus Torvalds committed
380 381 382 383 384 385 386 387 388 389 390 391 392
	} else {
		return -ENOMEM;
	}

	root = d_alloc_root(inode);
	if (!root) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = root;
	return 0;
}

393 394 395
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
Linus Torvalds's avatar
Linus Torvalds committed
396
{
397
	return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt);
Linus Torvalds's avatar
Linus Torvalds committed
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
	.kill_sb = kill_litter_super,
};

/* struct cftype:
 *
 * The files in the cpuset filesystem mostly have a very simple read/write
 * handling, some common function will take care of it. Nevertheless some cases
 * (read tasks) are special and therefore I define this structure for every
 * kind of file.
 *
 *
 * When reading/writing to a file:
415 416
 *	- the cpuset to use in file->f_path.dentry->d_parent->d_fsdata
 *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
Linus Torvalds's avatar
Linus Torvalds committed
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
 */

struct cftype {
	char *name;
	int private;
	int (*open) (struct inode *inode, struct file *file);
	ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*write) (struct file *file, const char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*release) (struct inode *inode, struct file *file);
};

static inline struct cpuset *__d_cs(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

/*
441
 * Call with manage_mutex held.  Writes path of cpuset into buf.
Linus Torvalds's avatar
Linus Torvalds committed
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
 * Returns 0 on success, -errno on error.
 */

static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
{
	char *start;

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
		int len = cs->dentry->d_name.len;
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
		memcpy(start, cs->dentry->d_name.name, len);
		cs = cs->parent;
		if (!cs)
			break;
		if (!cs->parent)
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

/*
 * Notify userspace when a cpuset is released, by running
 * /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cpuset.
 *
 * This races with the possibility that some other task will be
 * attached to this cpuset before it is removed, or that some other
 * user task will 'mkdir' a child cpuset of this cpuset.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
 * unused, and this cpuset will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
485 486 487 488 489 490 491 492
 * The final arg to call_usermodehelper() is 0, which means don't
 * wait.  The separate /sbin/cpuset_release_agent task is forked by
 * call_usermodehelper(), then control in this thread returns here,
 * without waiting for the release agent task.  We don't bother to
 * wait because the caller of this routine has no use for the exit
 * status of the /sbin/cpuset_release_agent task, so no sense holding
 * our caller up for that.
 *
493
 * When we had only one cpuset mutex, we had to call this
494 495
 * without holding it, to avoid deadlock when call_usermodehelper()
 * allocated memory.  With two locks, we could now call this while
496 497
 * holding manage_mutex, but we still don't, so as to minimize
 * the time manage_mutex is held.
Linus Torvalds's avatar
Linus Torvalds committed
498 499
 */

500
static void cpuset_release_agent(const char *pathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
501 502 503 504
{
	char *argv[3], *envp[3];
	int i;

505 506 507
	if (!pathbuf)
		return;

Linus Torvalds's avatar
Linus Torvalds committed
508 509
	i = 0;
	argv[i++] = "/sbin/cpuset_release_agent";
510
	argv[i++] = (char *)pathbuf;
Linus Torvalds's avatar
Linus Torvalds committed
511 512 513 514 515 516 517 518
	argv[i] = NULL;

	i = 0;
	/* minimal command environment */
	envp[i++] = "HOME=/";
	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
	envp[i] = NULL;

519
	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
520
	kfree(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
521 522 523 524 525 526
}

/*
 * Either cs->count of using tasks transitioned to zero, or the
 * cs->children list of child cpusets just became empty.  If this
 * cs is notify_on_release() and now both the user count is zero and
527 528
 * the list of children is empty, prepare cpuset path in a kmalloc'd
 * buffer, to be returned via ppathbuf, so that the caller can invoke
529 530
 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
 * Call here with manage_mutex held.
531 532 533 534 535
 *
 * This check_for_release() routine is responsible for kmalloc'ing
 * pathbuf.  The above cpuset_release_agent() is responsible for
 * kfree'ing pathbuf.  The caller of these routines is responsible
 * for providing a pathbuf pointer, initialized to NULL, then
536 537
 * calling check_for_release() with manage_mutex held and the address
 * of the pathbuf pointer, then dropping manage_mutex, then calling
538
 * cpuset_release_agent() with pathbuf, as set by check_for_release().
Linus Torvalds's avatar
Linus Torvalds committed
539 540
 */

541
static void check_for_release(struct cpuset *cs, char **ppathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
542 543 544 545 546 547 548 549 550
{
	if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
	    list_empty(&cs->children)) {
		char *buf;

		buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!buf)
			return;
		if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
551 552 553
			kfree(buf);
		else
			*ppathbuf = buf;
Linus Torvalds's avatar
Linus Torvalds committed
554 555 556 557 558 559 560 561 562 563 564 565 566 567
	}
}

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
568
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
584 585 586 587
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
588 589
 *
 * One way or another, we guarantee to return some non-empty subset
590
 * of node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
591
 *
592
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
593 594 595 596
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
597 598
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
Linus Torvalds's avatar
Linus Torvalds committed
599 600
		cs = cs->parent;
	if (cs)
601 602
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
Linus Torvalds's avatar
Linus Torvalds committed
603
	else
604 605
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
Linus Torvalds's avatar
Linus Torvalds committed
606 607
}

608 609 610 611 612 613
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
614
 *
615 616 617 618
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
619 620 621 622
 * Call without callback_mutex or task_lock() held.  May be
 * called with or without manage_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
 * be NULL.  This routine also might acquire callback_mutex and
623
 * current->mm->mmap_sem during call.
624
 *
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
 * from concurrent freeing of current->cpuset by attach_task(),
 * using RCU.
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
643 644 645 646 647
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
Linus Torvalds's avatar
Linus Torvalds committed
648 649
 */

650
void cpuset_update_task_memory_state(void)
Linus Torvalds's avatar
Linus Torvalds committed
651
{
652
	int my_cpusets_mem_gen;
653
	struct task_struct *tsk = current;
654
	struct cpuset *cs;
655

656 657 658 659 660 661 662 663 664
	if (tsk->cpuset == &top_cpuset) {
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
		cs = rcu_dereference(tsk->cpuset);
		my_cpusets_mem_gen = cs->mems_generation;
		rcu_read_unlock();
	}
Linus Torvalds's avatar
Linus Torvalds committed
665

666
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
667
		mutex_lock(&callback_mutex);
668 669 670 671
		task_lock(tsk);
		cs = tsk->cpuset;	/* Maybe changed when task not locked */
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
672 673 674 675 676 677 678 679
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
680
		task_unlock(tsk);
681
		mutex_unlock(&callback_mutex);
682
		mpol_rebind_task(tsk, &tsk->mems_allowed);
Linus Torvalds's avatar
Linus Torvalds committed
683 684 685 686 687 688 689 690
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
691
 * are only set if the other's are set.  Call holding manage_mutex.
Linus Torvalds's avatar
Linus Torvalds committed
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
709
 * manage_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
	list_for_each_entry(c, &cur->children, sibling) {
		if (!is_cpuset_subset(c, trial))
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
733
	if (cur == &top_cpuset)
Linus Torvalds's avatar
Linus Torvalds committed
734 735
		return 0;

736 737
	par = cur->parent;

Linus Torvalds's avatar
Linus Torvalds committed
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

	/* If either I or some sibling (!= me) is exclusive, we can't overlap */
	list_for_each_entry(c, &par->children, sibling) {
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

	return 0;
}

757
/*
758
 * Call with manage_mutex held.  May take callback_mutex during call.
759 760
 */

Linus Torvalds's avatar
Linus Torvalds committed
761 762 763
static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
764
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
765

766 767 768 769
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

Linus Torvalds's avatar
Linus Torvalds committed
770
	trialcs = *cs;
771 772 773 774 775 776 777 778 779 780 781 782 783

	/*
	 * We allow a cpuset's cpus_allowed to be empty; if it has attached
	 * tasks, we'll catch it later when we validate the change and return
	 * -ENOSPC.
	 */
	if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
		cpus_clear(trialcs.cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs.cpus_allowed);
		if (retval < 0)
			return retval;
	}
Linus Torvalds's avatar
Linus Torvalds committed
784
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
785 786
	/* cpus_allowed cannot be empty for a cpuset with attached tasks. */
	if (atomic_read(&cs->count) && cpus_empty(trialcs.cpus_allowed))
Linus Torvalds's avatar
Linus Torvalds committed
787 788
		return -ENOSPC;
	retval = validate_change(cs, &trialcs);
789 790
	if (retval < 0)
		return retval;
791
	mutex_lock(&callback_mutex);
792
	cs->cpus_allowed = trialcs.cpus_allowed;
793
	mutex_unlock(&callback_mutex);
794
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
795 796
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    Call holding manage_mutex, so our current->cpuset won't change
 *    during this call, as manage_mutex holds off any attach_task()
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
 *    our tasks cpuset.
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
	guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed);
	mutex_unlock(&callback_mutex);
}

846
/*
847 848 849
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
850 851 852
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
853
 *
854
 * Call with manage_mutex held.  May take callback_mutex during call.
855 856 857
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
858 859
 */

Linus Torvalds's avatar
Linus Torvalds committed
860 861 862
static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
863
	nodemask_t oldmem;
864 865 866
	struct task_struct *g, *p;
	struct mm_struct **mmarray;
	int i, n, ntasks;
867
	int migrate;
868
	int fudge;
Linus Torvalds's avatar
Linus Torvalds committed
869 870
	int retval;

871 872 873 874
	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
875 876 877
	if (cs == &top_cpuset)
		return -EACCES;

Linus Torvalds's avatar
Linus Torvalds committed
878
	trialcs = *cs;
879 880 881 882 883 884 885 886 887 888 889 890

	/*
	 * We allow a cpuset's mems_allowed to be empty; if it has attached
	 * tasks, we'll catch it later when we validate the change and return
	 * -ENOSPC.
	 */
	if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
		nodes_clear(trialcs.mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs.mems_allowed);
		if (retval < 0)
			goto done;
891 892 893 894 895 896 897 898
		if (!nodes_intersects(trialcs.mems_allowed,
						node_states[N_HIGH_MEMORY])) {
			/*
			 * error if only memoryless nodes specified.
			 */
			retval = -ENOSPC;
			goto done;
		}
899
	}
900 901 902 903 904 905
	/*
	 * Exclude memoryless nodes.  We know that trialcs.mems_allowed
	 * contains at least one node with memory.
	 */
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
						node_states[N_HIGH_MEMORY]);
906 907 908 909 910
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
911 912
	/* mems_allowed cannot be empty for a cpuset with attached tasks. */
	if (atomic_read(&cs->count) && nodes_empty(trialcs.mems_allowed)) {
913 914
		retval = -ENOSPC;
		goto done;
Linus Torvalds's avatar
Linus Torvalds committed
915
	}
916 917 918 919
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

920
	mutex_lock(&callback_mutex);
921
	cs->mems_allowed = trialcs.mems_allowed;
922
	cs->mems_generation = cpuset_mems_generation++;
923
	mutex_unlock(&callback_mutex);
924

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	set_cpuset_being_rebound(cs);		/* causes mpol_copy() rebind */

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
		ntasks = atomic_read(&cs->count);	/* guess */
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
944
		read_lock(&tasklist_lock);		/* block fork */
945 946
		if (atomic_read(&cs->count) <= ntasks)
			break;				/* got enough */
947
		read_unlock(&tasklist_lock);		/* try again */
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
	do_each_thread(g, p) {
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
			continue;
		}
		if (p->cpuset != cs)
			continue;
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
	} while_each_thread(g, p);
969
	read_unlock(&tasklist_lock);
970 971 972 973 974 975 976 977 978

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
	 * tasklist_lock.  Forks can happen again now - the mpol_copy()
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
979
	 * cpuset manage_mutex, we know that no other rebind effort will
980 981
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
982
	 * is idempotent.  Also migrate pages in each mm to new nodes.
983
	 */
984
	migrate = is_memory_migrate(cs);
985 986 987 988
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
989 990
		if (migrate)
			cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
991 992 993 994 995 996 997
		mmput(mm);
	}

	/* We're done rebinding vma's to this cpusets new mems_allowed. */
	kfree(mmarray);
	set_cpuset_being_rebound(NULL);
	retval = 0;
998
done:
Linus Torvalds's avatar
Linus Torvalds committed
999 1000 1001
	return retval;
}

1002
/*
1003
 * Call with manage_mutex held.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
1015 1016 1017
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
1018 1019
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
Linus Torvalds's avatar
Linus Torvalds committed
1020 1021
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
1022
 *
1023
 * Call with manage_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
1024 1025 1026 1027 1028 1029
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
1030
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1041 1042
	if (err < 0)
		return err;
1043
	mutex_lock(&callback_mutex);
1044
	cs->flags = trialcs.flags;
1045
	mutex_unlock(&callback_mutex);
1046 1047

	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
1048 1049
}

1050
/*
1051
 * Frequency meter - How fast is some event occurring?
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1148 1149 1150 1151 1152
/*
 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
 * notified on release.
 *
1153
 * Call holding manage_mutex.  May take callback_mutex and task_lock of
1154 1155 1156
 * the task 'pid' during call.
 */

1157
static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
1158 1159 1160 1161 1162
{
	pid_t pid;
	struct task_struct *tsk;
	struct cpuset *oldcs;
	cpumask_t cpus;
1163
	nodemask_t from, to;
1164
	struct mm_struct *mm;
1165
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
1166

1167
	if (sscanf(pidbuf, "%d", &pid) != 1)
Linus Torvalds's avatar
Linus Torvalds committed
1168 1169 1170 1171 1172 1173 1174 1175
		return -EIO;
	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

	if (pid) {
		read_lock(&tasklist_lock);

		tsk = find_task_by_pid(pid);
1176
		if (!tsk || tsk->flags & PF_EXITING) {
Linus Torvalds's avatar
Linus Torvalds committed
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
			read_unlock(&tasklist_lock);
			return -ESRCH;
		}

		get_task_struct(tsk);
		read_unlock(&tasklist_lock);

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1194 1195 1196 1197 1198 1199
	retval = security_task_setscheduler(tsk, 0, NULL);
	if (retval) {
		put_task_struct(tsk);
		return retval;
	}

1200
	mutex_lock(&callback_mutex);
1201

Linus Torvalds's avatar
Linus Torvalds committed
1202 1203
	task_lock(tsk);
	oldcs = tsk->cpuset;
1204 1205 1206 1207 1208 1209
	/*
	 * After getting 'oldcs' cpuset ptr, be sure still not exiting.
	 * If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
	 * then fail this attach_task(), to avoid breaking top_cpuset.count.
	 */
	if (tsk->flags & PF_EXITING) {
Linus Torvalds's avatar
Linus Torvalds committed
1210
		task_unlock(tsk);
1211
		mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1212 1213 1214 1215
		put_task_struct(tsk);
		return -ESRCH;
	}
	atomic_inc(&cs->count);
1216
	rcu_assign_pointer(tsk->cpuset, cs);
Linus Torvalds's avatar
Linus Torvalds committed
1217 1218 1219 1220 1221
	task_unlock(tsk);

	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);

1222 1223 1224
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;

1225
	mutex_unlock(&callback_mutex);
1226 1227 1228 1229

	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1230
		if (is_memory_migrate(cs))
1231
			cpuset_migrate_mm(mm, &from, &to);
1232 1233 1234
		mmput(mm);
	}

Linus Torvalds's avatar
Linus Torvalds committed
1235
	put_task_struct(tsk);
1236
	synchronize_rcu();
Linus Torvalds's avatar
Linus Torvalds committed
1237
	if (atomic_dec_and_test(&oldcs->count))
1238
		check_for_release(oldcs, ppathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1239 1240 1241 1242 1243 1244 1245 1246
	return 0;
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
	FILE_ROOT,
	FILE_DIR,
1247
	FILE_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
1248 1249 1250 1251 1252
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
	FILE_NOTIFY_ON_RELEASE,
1253 1254
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1255 1256
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
1257 1258 1259
	FILE_TASKLIST,
} cpuset_filetype_t;

1260 1261
static ssize_t cpuset_common_file_write(struct file *file,
					const char __user *userbuf,
Linus Torvalds's avatar
Linus Torvalds committed
1262 1263
					size_t nbytes, loff_t *unused_ppos)
{
1264 1265
	struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
	struct cftype *cft = __d_cft(file->f_path.dentry);
Linus Torvalds's avatar
Linus Torvalds committed
1266 1267
	cpuset_filetype_t type = cft->private;
	char *buffer;
1268
	char *pathbuf = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1269 1270 1271
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
1272
	if (nbytes > 100 + 6 * max(NR_CPUS, MAX_NUMNODES))
Linus Torvalds's avatar
Linus Torvalds committed
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

1285
	mutex_lock(&manage_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

	if (is_removed(cs)) {
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
	case FILE_NOTIFY_ON_RELEASE:
		retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
		break;
1308 1309 1310
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
1311 1312 1313 1314 1315 1316
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1317 1318
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
1319
		cs->mems_generation = cpuset_mems_generation++;
1320 1321 1322
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1323
		cs->mems_generation = cpuset_mems_generation++;
1324
		break;
Linus Torvalds's avatar
Linus Torvalds committed
1325
	case FILE_TASKLIST:
1326
		retval = attach_task(cs, buffer, &pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1327 1328 1329 1330 1331 1332 1333 1334 1335
		break;
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
1336
	mutex_unlock(&manage_mutex);
1337
	cpuset_release_agent(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1338 1339 1340 1341 1342 1343 1344 1345 1346
out1:
	kfree(buffer);
	return retval;
}

static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	ssize_t retval = 0;
1347
	struct cftype *cft = __d_cft(file->f_path.dentry);
Linus Torvalds's avatar
Linus Torvalds committed
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->write)
		retval = cft->write(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_write(file, buf, nbytes, ppos);

	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1376
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1377
	mask = cs->cpus_allowed;
1378
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1379 1380 1381 1382 1383 1384 1385 1386

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1387
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1388
	mask = cs->mems_allowed;
1389
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1390 1391 1392 1393 1394 1395 1396

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
				size_t nbytes, loff_t *ppos)
{
1397 1398
	struct cftype *cft = __d_cft(file->f_path.dentry);
	struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
Linus Torvalds's avatar
Linus Torvalds committed
1399 1400 1401 1402 1403
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1404
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
Linus Torvalds's avatar
Linus Torvalds committed
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
	case