cpuset.c 69.2 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
Paul Jackson's avatar
Paul Jackson committed
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
Linus Torvalds's avatar
Linus Torvalds committed
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
Linus Torvalds's avatar
Linus Torvalds committed
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
Linus Torvalds's avatar
Linus Torvalds committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
35
#include <linux/mempolicy.h>
Linus Torvalds's avatar
Linus Torvalds committed
36 37 38 39 40 41
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
42
#include <linux/rcupdate.h>
Linus Torvalds's avatar
Linus Torvalds committed
43 44
#include <linux/sched.h>
#include <linux/seq_file.h>
45
#include <linux/security.h>
Linus Torvalds's avatar
Linus Torvalds committed
46 47 48 49 50 51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
56
#include <linux/mutex.h>
Paul Jackson's avatar
Paul Jackson committed
57
#include <linux/kfifo.h>
58 59
#include <linux/workqueue.h>
#include <linux/cgroup.h>
Linus Torvalds's avatar
Linus Torvalds committed
60

61 62 63 64 65
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
66
int number_of_cpusets __read_mostly;
67

68
/* Forward declare cgroup structures */
69 70 71
struct cgroup_subsys cpuset_subsys;
struct cpuset;

72 73 74 75 76 77 78 79 80
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

Linus Torvalds's avatar
Linus Torvalds committed
81
struct cpuset {
82 83
	struct cgroup_subsys_state css;

Linus Torvalds's avatar
Linus Torvalds committed
84 85 86 87 88 89 90 91 92 93
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
94 95 96
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
Paul Jackson's avatar
Paul Jackson committed
97 98 99

	/* partition number for rebuild_sched_domains() */
	int pn;
100

101 102 103
	/* for custom sched domain */
	int relax_domain_level;

104 105
	/* used for walking a cpuset heirarchy */
	struct list_head stack_list;
Linus Torvalds's avatar
Linus Torvalds committed
106 107
};

108 109 110 111 112 113 114 115 116 117 118 119 120
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}
121 122 123 124
struct cpuset_hotplug_scanner {
	struct cgroup_scanner scan;
	struct cgroup *to;
};
125

Linus Torvalds's avatar
Linus Torvalds committed
126 127 128 129
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
130
	CS_MEM_HARDWALL,
131
	CS_MEMORY_MIGRATE,
Paul Jackson's avatar
Paul Jackson committed
132
	CS_SCHED_LOAD_BALANCE,
133 134
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
135 136 137 138 139
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
140
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
141 142 143 144
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
145
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
146 147
}

148 149 150 151 152
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

Paul Jackson's avatar
Paul Jackson committed
153 154 155 156 157
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

158 159
static inline int is_memory_migrate(const struct cpuset *cs)
{
160
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161 162
}

163 164 165 166 167 168 169 170 171 172
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

Linus Torvalds's avatar
Linus Torvalds committed
173
/*
174
 * Increment this integer everytime any cpuset changes its
Linus Torvalds's avatar
Linus Torvalds committed
175 176 177 178
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
179
 * A single, global generation is needed because cpuset_attach_task() could
Linus Torvalds's avatar
Linus Torvalds committed
180 181 182 183
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
184
 * modify another's memory placement.  So we must enable every task,
Linus Torvalds's avatar
Linus Torvalds committed
185 186 187
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
188
 *
189
 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
190
 * there is no need to mark it atomic.
Linus Torvalds's avatar
Linus Torvalds committed
191
 */
192
static int cpuset_mems_generation;
Linus Torvalds's avatar
Linus Torvalds committed
193 194 195 196 197 198 199 200

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
};

/*
201 202 203 204 205 206 207
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
208
 *
209
 * A task must hold both mutexes to modify cpusets.  If a task
210
 * holds cgroup_mutex, then it blocks others wanting that mutex,
211
 * ensuring that it is the only task able to also acquire callback_mutex
212 213
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
214
 * also allocate memory while just holding cgroup_mutex.  While it is
215
 * performing these checks, various callback routines can briefly
216 217
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
218 219
 *
 * Calls to the kernel memory allocator can not be made while holding
220
 * callback_mutex, as that would risk double tripping on callback_mutex
221 222 223
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
224
 * If a task is only holding callback_mutex, then it has read-only
225 226 227 228 229
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
230
 * The cpuset_common_file_read() handlers only hold callback_mutex across
231 232 233
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
234 235
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
Linus Torvalds's avatar
Linus Torvalds committed
236 237
 */

238
static DEFINE_MUTEX(callback_mutex);
239

240 241 242
/* This is ugly, but preserves the userspace API for existing cpuset
 * users. If someone tries to mount the "cpuset" filesystem, we
 * silently switch it to mount "cgroup" instead */
243 244 245
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
Linus Torvalds's avatar
Linus Torvalds committed
246
{
247 248 249 250 251 252 253 254 255 256 257
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
276
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
292 293 294 295
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
296 297
 *
 * One way or another, we guarantee to return some non-empty subset
298
 * of node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
299
 *
300
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
301 302 303 304
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
305 306
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
Linus Torvalds's avatar
Linus Torvalds committed
307 308
		cs = cs->parent;
	if (cs)
309 310
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
Linus Torvalds's avatar
Linus Torvalds committed
311
	else
312 313
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
Linus Torvalds's avatar
Linus Torvalds committed
314 315
}

316 317 318 319 320 321
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
322
 *
323 324 325 326
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
327
 * Call without callback_mutex or task_lock() held.  May be
328 329
 * called with or without cgroup_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the task's cpuset pointer will never
David Rientjes's avatar
David Rientjes committed
330 331
 * be NULL.  This routine also might acquire callback_mutex during
 * call.
332
 *
333 334
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
335
 * from concurrent freeing of current->cpuset using RCU.
336 337 338 339 340 341 342 343 344 345 346 347 348 349
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
350 351 352 353 354
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
Linus Torvalds's avatar
Linus Torvalds committed
355 356
 */

357
void cpuset_update_task_memory_state(void)
Linus Torvalds's avatar
Linus Torvalds committed
358
{
359
	int my_cpusets_mem_gen;
360
	struct task_struct *tsk = current;
361
	struct cpuset *cs;
362

363
	if (task_cs(tsk) == &top_cpuset) {
364 365 366 367
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
368
		my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
369 370
		rcu_read_unlock();
	}
Linus Torvalds's avatar
Linus Torvalds committed
371

372
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
373
		mutex_lock(&callback_mutex);
374
		task_lock(tsk);
375
		cs = task_cs(tsk); /* Maybe changed when task not locked */
376 377
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
378 379 380 381 382 383 384 385
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
386
		task_unlock(tsk);
387
		mutex_unlock(&callback_mutex);
388
		mpol_rebind_task(tsk, &tsk->mems_allowed);
Linus Torvalds's avatar
Linus Torvalds committed
389 390 391 392 393 394 395 396
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
397
 * are only set if the other's are set.  Call holding cgroup_mutex.
Linus Torvalds's avatar
Linus Torvalds committed
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
415
 * cgroup_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
416 417 418 419 420 421 422 423 424 425 426 427 428 429
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
430
	struct cgroup *cont;
Linus Torvalds's avatar
Linus Torvalds committed
431 432 433
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
434 435
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
Linus Torvalds's avatar
Linus Torvalds committed
436 437 438 439
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
440
	if (cur == &top_cpuset)
Linus Torvalds's avatar
Linus Torvalds committed
441 442
		return 0;

443 444
	par = cur->parent;

Linus Torvalds's avatar
Linus Torvalds committed
445 446 447 448
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

449 450 451 452
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
453 454
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
Linus Torvalds's avatar
Linus Torvalds committed
455 456 457 458 459 460 461 462 463 464
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

465 466 467 468 469 470 471 472
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
		if (cpus_empty(trial->cpus_allowed) ||
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

Linus Torvalds's avatar
Linus Torvalds committed
473 474 475
	return 0;
}

Paul Jackson's avatar
Paul Jackson committed
476 477 478 479 480 481 482 483 484 485
/*
 * Helper routine for rebuild_sched_domains().
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */

static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
	return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
}

486 487 488 489 490 491 492 493 494 495
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (!dattr)
		return;
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

Paul Jackson's avatar
Paul Jackson committed
496 497 498
/*
 * rebuild_sched_domains()
 *
499 500 501 502 503 504 505 506 507 508
 * This routine will be called to rebuild the scheduler's dynamic
 * sched domains:
 * - if the flag 'sched_load_balance' of any cpuset with non-empty
 *   'cpus' changes,
 * - or if the 'cpus' allowed changes in any cpuset which has that
 *   flag enabled,
 * - or if the 'sched_relax_domain_level' of any cpuset which has
 *   that flag enabled and with non-empty 'cpus' changes,
 * - or if any cpuset with non-empty 'cpus' is removed,
 * - or if a cpu gets offlined.
Paul Jackson's avatar
Paul Jackson committed
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
 *
 * This routine builds a partial partition of the systems CPUs
 * (the set of non-overlappping cpumask_t's in the array 'part'
 * below), and passes that partial partition to the kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the
 * schedulers load balancing domains (sched domains) as specified
 * by that partial partition.  A 'partial partition' is a set of
 * non-overlapping subsets whose union is a subset of that set.
 *
 * See "What is sched_load_balance" in Documentation/cpusets.txt
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during
 * call due to the kfifo_alloc() and kmalloc() calls.  May nest
528
 * a call to the get_online_cpus()/put_online_cpus() pair.
Paul Jackson's avatar
Paul Jackson committed
529
 * Must not be called holding callback_mutex, because we must not
530 531
 * call get_online_cpus() while holding callback_mutex.  Elsewhere
 * the kernel nests callback_mutex inside get_online_cpus() calls.
Paul Jackson's avatar
Paul Jackson committed
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
 * So the reverse nesting would risk an ABBA deadlock.
 *
 * The three key local variables below are:
 *    q  - a kfifo queue of cpuset pointers, used to implement a
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */

568
void rebuild_sched_domains(void)
Paul Jackson's avatar
Paul Jackson committed
569 570 571 572 573 574 575
{
	struct kfifo *q;	/* queue of cpusets to be scanned */
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
	cpumask_t *doms;	/* resulting partition; i.e. sched domains */
576
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
Paul Jackson's avatar
Paul Jackson committed
577 578 579 580 581 582
	int ndoms;		/* number of sched domains in result */
	int nslot;		/* next empty doms[] cpumask_t slot */

	q = NULL;
	csa = NULL;
	doms = NULL;
583
	dattr = NULL;
Paul Jackson's avatar
Paul Jackson committed
584 585 586 587 588 589 590

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
		ndoms = 1;
		doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
		if (!doms)
			goto rebuild;
591 592 593 594 595
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
			update_domain_attr(dattr, &top_cpuset);
		}
Paul Jackson's avatar
Paul Jackson committed
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
		*doms = top_cpuset.cpus_allowed;
		goto rebuild;
	}

	q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
	if (IS_ERR(q))
		goto done;
	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

	cp = &top_cpuset;
	__kfifo_put(q, (void *)&cp, sizeof(cp));
	while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
613 614 615 616

		if (cpus_empty(cp->cpus_allowed))
			continue;

Paul Jackson's avatar
Paul Jackson committed
617 618
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;
619

Paul Jackson's avatar
Paul Jackson committed
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			__kfifo_put(q, (void *)&child, sizeof(cp));
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

	/* Convert <csn, csa> to <ndoms, doms> */
	doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
	if (!doms)
		goto rebuild;
657
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
Paul Jackson's avatar
Paul Jackson committed
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		if (apn >= 0) {
			cpumask_t *dp = doms + nslot;

			if (nslot == ndoms) {
				static int warnings = 10;
				if (warnings) {
					printk(KERN_WARNING
					 "rebuild_sched_domains confused:"
					  " nslot %d, ndoms %d, csn %d, i %d,"
					  " apn %d\n",
					  nslot, ndoms, csn, i, apn);
					warnings--;
				}
				continue;
			}

			cpus_clear(*dp);
680 681
			if (dattr)
				*(dattr + nslot) = SD_ATTR_INIT;
Paul Jackson's avatar
Paul Jackson committed
682 683 684 685 686 687
			for (j = i; j < csn; j++) {
				struct cpuset *b = csa[j];

				if (apn == b->pn) {
					cpus_or(*dp, *dp, b->cpus_allowed);
					b->pn = -1;
688 689 690
					if (dattr)
						update_domain_attr(dattr
								   + nslot, b);
Paul Jackson's avatar
Paul Jackson committed
691 692 693 694 695 696 697 698 699
				}
			}
			nslot++;
		}
	}
	BUG_ON(nslot != ndoms);

rebuild:
	/* Have scheduler rebuild sched domains */
700
	get_online_cpus();
701
	partition_sched_domains(ndoms, doms, dattr);
702
	put_online_cpus();
Paul Jackson's avatar
Paul Jackson committed
703 704 705 706 707 708

done:
	if (q && !IS_ERR(q))
		kfifo_free(q);
	kfree(csa);
	/* Don't kfree(doms) -- partition_sched_domains() does that. */
709
	/* Don't kfree(dattr) -- partition_sched_domains() does that. */
Paul Jackson's avatar
Paul Jackson committed
710 711
}

712 713 714 715 716
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
717
 * Call with cgroup_mutex held.  May take callback_mutex during call.
718 719 720
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
721
 */
722 723
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
724 725 726 727
{
	return !cpus_equal(tsk->cpus_allowed,
			(cgroup_cs(scan->cg))->cpus_allowed);
}
728

729 730 731 732 733 734 735 736 737 738 739
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
740 741
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
742
{
743
	set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
744 745
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * Return 0 if successful, -errno if not.
 */
static int update_tasks_cpumask(struct cpuset *cs)
{
	struct cgroup_scanner scan;
	struct ptr_heap heap;
	int retval;

763 764 765 766 767 768
	/*
	 * cgroup_scan_tasks() will initialize heap->gt for us.
	 * heap_init() is still needed here for we should not change
	 * cs->cpus_allowed when heap_init() fails.
	 */
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
769 770 771 772 773 774 775 776 777 778 779 780 781
	if (retval)
		return retval;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
	scan.heap = &heap;
	retval = cgroup_scan_tasks(&scan);

	heap_free(&heap);
	return retval;
}

782 783 784 785 786
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
787
static int update_cpumask(struct cpuset *cs, const char *buf)
Linus Torvalds's avatar
Linus Torvalds committed
788 789
{
	struct cpuset trialcs;
790 791
	int retval;
	int is_load_balanced;
Linus Torvalds's avatar
Linus Torvalds committed
792

793 794 795 796
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

Linus Torvalds's avatar
Linus Torvalds committed
797
	trialcs = *cs;
798 799

	/*
800
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
801 802 803
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
804
	 */
805
	if (!*buf) {
806 807 808 809 810
		cpus_clear(trialcs.cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs.cpus_allowed);
		if (retval < 0)
			return retval;
811 812 813

		if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
			return -EINVAL;
814
	}
Linus Torvalds's avatar
Linus Torvalds committed
815
	retval = validate_change(cs, &trialcs);
816 817
	if (retval < 0)
		return retval;
Paul Jackson's avatar
Paul Jackson committed
818

Paul Menage's avatar
Paul Menage committed
819 820 821
	/* Nothing to do if the cpus didn't change */
	if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
		return 0;
822

Paul Jackson's avatar
Paul Jackson committed
823 824
	is_load_balanced = is_sched_load_balance(&trialcs);

825
	mutex_lock(&callback_mutex);
826
	cs->cpus_allowed = trialcs.cpus_allowed;
827
	mutex_unlock(&callback_mutex);
Paul Jackson's avatar
Paul Jackson committed
828

Paul Menage's avatar
Paul Menage committed
829 830
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
831
	 * that need an update.
Paul Menage's avatar
Paul Menage committed
832
	 */
833 834 835
	retval = update_tasks_cpumask(cs);
	if (retval < 0)
		return retval;
836

Paul Menage's avatar
Paul Menage committed
837
	if (is_load_balanced)
Paul Jackson's avatar
Paul Jackson committed
838
		rebuild_sched_domains();
839
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
840 841
}

842 843 844 845 846 847 848 849
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
850
 *    Call holding cgroup_mutex, so current's cpuset won't change
851
 *    during this call, as manage_mutex holds off any cpuset_attach()
852 853
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
854
 *    our task's cpuset.
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
887
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
888 889 890
	mutex_unlock(&callback_mutex);
}

891 892
static void *cpuset_being_rebound;

893 894 895 896 897 898 899 900 901
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
 *
 * Called with cgroup_mutex held
 * Return 0 if successful, -errno if not.
 */
static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
Linus Torvalds's avatar
Linus Torvalds committed
902
{
903
	struct task_struct *p;
904 905
	struct mm_struct **mmarray;
	int i, n, ntasks;
906
	int migrate;
907
	int fudge;
908
	struct cgroup_iter it;
909
	int retval;
910

911
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
912 913 914 915 916 917 918 919 920 921 922 923 924

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
925
		ntasks = cgroup_task_count(cs->css.cgroup);  /* guess */
926 927 928 929
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
930
		read_lock(&tasklist_lock);		/* block fork */
931
		if (cgroup_task_count(cs->css.cgroup) <= ntasks)
932
			break;				/* got enough */
933
		read_unlock(&tasklist_lock);		/* try again */
934 935 936 937 938 939
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
940 941
	cgroup_iter_start(cs->css.cgroup, &it);
	while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
942 943 944 945 946
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
947
			break;
948 949 950 951 952
		}
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
953 954
	}
	cgroup_iter_end(cs->css.cgroup, &it);
955
	read_unlock(&tasklist_lock);
956 957 958 959 960 961

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
962
	 * tasklist_lock.  Forks can happen again now - the mpol_dup()
963 964
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
965
	 * cgroup_mutex, we know that no other rebind effort will
966 967
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
968
	 * is idempotent.  Also migrate pages in each mm to new nodes.
969
	 */
970
	migrate = is_memory_migrate(cs);
971 972 973 974
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
975
		if (migrate)
976
			cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
977 978 979
		mmput(mm);
	}

980
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
981
	kfree(mmarray);
982
	cpuset_being_rebound = NULL;
983
	retval = 0;
984
done:
Linus Torvalds's avatar
Linus Torvalds committed
985 986 987
	return retval;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
static int update_nodemask(struct cpuset *cs, const char *buf)
{
	struct cpuset trialcs;
	nodemask_t oldmem;
	int retval;

	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
	if (cs == &top_cpuset)
		return -EACCES;

	trialcs = *cs;

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
		nodes_clear(trialcs.mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs.mems_allowed);
		if (retval < 0)
			goto done;

		if (!nodes_subset(trialcs.mems_allowed,
				node_states[N_HIGH_MEMORY]))
			return -EINVAL;
	}
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
	cs->mems_allowed = trialcs.mems_allowed;
	cs->mems_generation = cpuset_mems_generation++;
	mutex_unlock(&callback_mutex);

	retval = update_tasks_nodemask(cs, &oldmem);
done:
	return retval;
}

1052 1053 1054 1055 1056
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1057
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1058
{
1059 1060
	if (val < -1 || val >= SD_LV_MAX)
		return -EINVAL;
1061 1062 1063

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1064 1065
		if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
			rebuild_sched_domains();
1066 1067 1068 1069 1070
	}

	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
1071 1072
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1073 1074 1075
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1076
 *
1077
 * Call with cgroup_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
1078 1079
 */

1080 1081
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
Linus Torvalds's avatar
Linus Torvalds committed
1082 1083
{
	struct cpuset trialcs;
1084
	int err;
Paul Jackson's avatar
Paul Jackson committed
1085
	int cpus_nonempty, balance_flag_changed;
Linus Torvalds's avatar
Linus Torvalds committed
1086 1087 1088 1089 1090 1091 1092 1093

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1094 1095
	if (err < 0)
		return err;
Paul Jackson's avatar
Paul Jackson committed
1096 1097 1098 1099 1100

	cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
	balance_flag_changed = (is_sched_load_balance(cs) !=
		 			is_sched_load_balance(&trialcs));

1101
	mutex_lock(&callback_mutex);
1102
	cs->flags = trialcs.flags;
1103
	mutex_unlock(&callback_mutex);
1104

Paul Jackson's avatar
Paul Jackson committed
1105 1106 1107
	if (cpus_nonempty && balance_flag_changed)
		rebuild_sched_domains();

1108
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
1109 1110
}

1111
/*
1112
 * Frequency meter - How fast is some event occurring?
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1209
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1210 1211
static int cpuset_can_attach(struct cgroup_subsys *ss,
			     struct cgroup *cont, struct task_struct *tsk)
Linus Torvalds's avatar
Linus Torvalds committed
1212
{
1213
	struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds's avatar
Linus Torvalds committed
1214 1215 1216

	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;
1217 1218 1219 1220 1221 1222 1223 1224 1225
	if (tsk->flags & PF_THREAD_BOUND) {
		cpumask_t mask;

		mutex_lock(&callback_mutex);
		mask = cs->cpus_allowed;
		mutex_unlock(&callback_mutex);
		if (!cpus_equal(tsk->cpus_allowed, mask))
			return -EINVAL;
	}
Linus Torvalds's avatar
Linus Torvalds committed
1226

1227 1228
	return security_task_setscheduler(tsk, 0, NULL);
}
Linus Torvalds's avatar
Linus Torvalds committed
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238
static void cpuset_attach(struct cgroup_subsys *ss,
			  struct cgroup *cont, struct cgroup *oldcont,
			  struct task_struct *tsk)
{
	cpumask_t cpus;
	nodemask_t from, to;
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);
1239
	int err;
1240

1241
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1242
	guarantee_online_cpus(cs, &cpus);
1243
	err = set_cpus_allowed_ptr(tsk, &cpus);
1244
	mutex_unlock(&callback_mutex);
1245 1246
	if (err)
		return;
Linus Torvalds's avatar
Linus Torvalds committed
1247

1248 1249
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;
1250 1251 1252
	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1253
		if (is_memory_migrate(cs))
1254
			cpuset_migrate_mm(mm, &from, &to);
1255 1256 1257
		mmput(mm);
	}

Linus Torvalds's avatar
Linus Torvalds committed
1258 1259 1260 1261 1262
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1263
	FILE_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
1264 1265 1266 1267
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1268
	FILE_MEM_HARDWALL,
Paul Jackson's avatar
Paul Jackson committed
1269
	FILE_SCHED_LOAD_BALANCE,
1270
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1271 1272
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1273 1274
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
1275 1276
} cpuset_filetype_t;

1277 1278 1279 1280 1281 1282
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1283
	if (!cgroup_lock_live_group(cgrp))
1284 1285 1286
		return -ENODEV;

	switch (type) {
Linus Torvalds's avatar
Linus Torvalds committed
1287
	case FILE_CPU_EXCLUSIVE:
1288
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
Linus Torvalds's avatar
Linus Torvalds committed
1289 1290
		break;
	case FILE_MEM_EXCLUSIVE:
1291
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
Linus Torvalds's avatar
Linus Torvalds committed
1292
		break;
1293 1294 1295
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
Paul Jackson's avatar
Paul Jackson committed
1296
	case FILE_SCHED_LOAD_BALANCE:
1297
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1298
		break;
1299
	case FILE_MEMORY_MIGRATE:
1300
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1301
		break;
1302
	case FILE_MEMORY_PRESSURE_ENABLED: