cfq-iosched.c 97.7 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
Linus Torvalds's avatar
Linus Torvalds committed
8 9
 */
#include <linux/module.h>
Al Viro's avatar
Al Viro committed
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
Randy Dunlap's avatar
Randy Dunlap committed
12
#include <linux/jiffies.h>
Linus Torvalds's avatar
Linus Torvalds committed
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
Linus Torvalds's avatar
Linus Torvalds committed
17 18 19 20

/*
 * tunables
 */
21
/* max queue in one round of service */
Shaohua Li's avatar
Shaohua Li committed
22
static const int cfq_quantum = 8;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
Jens Axboe's avatar
Jens Axboe committed
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45
#define CFQ_SLICE_SCALE		(5)
46
#define CFQ_HW_QUEUE_MIN	(5)
47
#define CFQ_SERVICE_SHIFT       12
48

49
#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
50
#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
51
#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
52

53 54
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
55
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
Linus Torvalds's avatar
Linus Torvalds committed
56

57 58
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
Linus Torvalds's avatar
Linus Torvalds committed
59

60
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61
static struct completion *ioc_gone;
62
static DEFINE_SPINLOCK(ioc_gone_lock);
63

64 65 66 67
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

68
#define sample_valid(samples)	((samples) > 80)
69
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
70

71 72 73 74 75 76 77 78 79
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
80
	unsigned count;
81
	unsigned total_weight;
82
	u64 min_vdisktime;
83
	struct rb_node *active;
84
};
85 86
#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_vdisktime = 0, }
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

117 118
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
119
	unsigned int allocated_slice;
120
	unsigned int slice_dispatch;
121 122
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
123 124 125 126 127 128 129 130 131 132 133 134
	unsigned long slice_end;
	long slice_resid;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

135 136
	pid_t pid;

137
	u32 seek_history;
138 139
	sector_t last_request_pos;

140
	struct cfq_rb_root *service_tree;
Jeff Moyer's avatar
Jeff Moyer committed
141
	struct cfq_queue *new_cfqq;
142
	struct cfq_group *cfqg;
143
	struct cfq_group *orig_cfqg;
144 145
	/* Sectors dispatched in current dispatch round */
	unsigned long nr_sectors;
146 147
};

148
/*
149
 * First index in the service_trees.
150 151 152 153
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
154 155
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
156 157
};

158 159 160 161 162 163 164 165 166
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

167 168
/* This is per cgroup per device grouping structure */
struct cfq_group {
169 170 171 172 173
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
174
	unsigned int weight;
175 176 177 178 179
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

180 181
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
182 183 184 185 186 187
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
188 189 190 191

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
192 193 194
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
195
	atomic_t ref;
196
#endif
197
};
198

199 200 201
/*
 * Per block device queue structure
 */
Linus Torvalds's avatar
Linus Torvalds committed
202
struct cfq_data {
203
	struct request_queue *queue;
204 205
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
206
	struct cfq_group root_group;
207

208 209
	/*
	 * The priority currently being served
210
	 */
211
	enum wl_prio_t serving_prio;
212 213
	enum wl_type_t serving_type;
	unsigned long workload_expires;
214
	struct cfq_group *serving_group;
215
	bool noidle_tree_requires_idle;
216 217 218 219 220 221 222 223

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

224 225
	unsigned int busy_queues;

226 227
	int rq_in_driver;
	int rq_in_flight[2];
228 229 230 231 232

	/*
	 * queue-depth detection
	 */
	int rq_queued;
233
	int hw_tag;
234 235 236 237 238 239 240 241
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
Linus Torvalds's avatar
Linus Torvalds committed
242

243 244 245 246
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
247
	struct work_struct unplug_work;
Linus Torvalds's avatar
Linus Torvalds committed
248

249 250 251
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

252 253 254 255 256
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
257

Jens Axboe's avatar
Jens Axboe committed
258
	sector_t last_position;
Linus Torvalds's avatar
Linus Torvalds committed
259 260 261 262 263

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
264
	unsigned int cfq_fifo_expire[2];
Linus Torvalds's avatar
Linus Torvalds committed
265 266
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
267 268 269
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
270
	unsigned int cfq_latency;
271
	unsigned int cfq_group_isolation;
272 273

	struct list_head cic_list;
Linus Torvalds's avatar
Linus Torvalds committed
274

275 276 277 278
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
279

280
	unsigned long last_delayed_sync;
281 282 283

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
284
	struct rcu_head rcu;
Linus Torvalds's avatar
Linus Torvalds committed
285 286
};

287 288
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

289 290
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
291
					    enum wl_type_t type)
292
{
293 294 295
	if (!cfqg)
		return NULL;

296
	if (prio == IDLE_WORKLOAD)
297
		return &cfqg->service_tree_idle;
298

299
	return &cfqg->service_trees[prio][type];
300 301
}

Jens Axboe's avatar
Jens Axboe committed
302
enum cfqq_state_flags {
303 304
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
305
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
306 307 308 309
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
310
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
311
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
312
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
313
	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
314
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
315
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
Jens Axboe's avatar
Jens Axboe committed
316 317 318 319 320
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
321
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
Jens Axboe's avatar
Jens Axboe committed
322 323 324
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
325
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
Jens Axboe's avatar
Jens Axboe committed
326 327 328
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
329
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
Jens Axboe's avatar
Jens Axboe committed
330 331 332 333
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
334
CFQ_CFQQ_FNS(must_dispatch);
Jens Axboe's avatar
Jens Axboe committed
335 336 337 338
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
339
CFQ_CFQQ_FNS(slice_new);
340
CFQ_CFQQ_FNS(sync);
341
CFQ_CFQQ_FNS(coop);
342
CFQ_CFQQ_FNS(split_coop);
343
CFQ_CFQQ_FNS(deep);
344
CFQ_CFQQ_FNS(wait_busy);
Jens Axboe's avatar
Jens Axboe committed
345 346
#undef CFQ_CFQQ_FNS

347 348 349 350 351 352 353 354 355 356 357
#ifdef CONFIG_DEBUG_CFQ_IOSCHED
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
			blkg_path(&(cfqq)->cfqg->blkg), ##args);

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
				blkg_path(&(cfqg)->blkg), ##args);      \

#else
358 359
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
360 361
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
#endif
362 363 364
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

365 366 367 368 369 370 371 372 373 374 375
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


376 377 378 379 380 381 382 383 384
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

385 386 387 388 389 390 391 392 393 394

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

395 396 397
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
398 399
{
	if (wl == IDLE_WORKLOAD)
400
		return cfqg->service_tree_idle.count;
401

402 403 404
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
405 406
}

407 408 409 410 411 412 413
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

414
static void cfq_dispatch_insert(struct request_queue *, struct request *);
415
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
416
				       struct io_context *, gfp_t);
417
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
418 419 420
						struct io_context *);

static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
421
					    bool is_sync)
422
{
423
	return cic->cfqq[is_sync];
424 425 426
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
427
				struct cfq_queue *cfqq, bool is_sync)
428
{
429
	cic->cfqq[is_sync] = cfqq;
430 431 432 433 434 435
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
436
static inline bool cfq_bio_sync(struct bio *bio)
437
{
438
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
439
}
Linus Torvalds's avatar
Linus Torvalds committed
440

Andrew Morton's avatar
Andrew Morton committed
441 442 443 444
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
445
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
Andrew Morton's avatar
Andrew Morton committed
446
{
447 448
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
449
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
450
	}
Andrew Morton's avatar
Andrew Morton committed
451 452
}

453
static int cfq_queue_empty(struct request_queue *q)
Andrew Morton's avatar
Andrew Morton committed
454 455 456
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

457
	return !cfqd->rq_queued;
Andrew Morton's avatar
Andrew Morton committed
458 459
}

460 461 462 463 464
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
465
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
466
				 unsigned short prio)
467
{
468
	const int base_slice = cfqd->cfq_slice[sync];
469

470 471 472 473
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
474

475 476 477 478
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
479 480
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

526 527 528 529 530 531
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

532 533
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
534
{
535 536 537
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
538
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
539

540 541 542
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
543
		cfq_hist_divisor;
544 545 546 547 548 549 550 551 552
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
553 554
}

555 556 557
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
558 559
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
560 561 562 563 564 565
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
566 567
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
568 569 570
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
571 572 573 574 575 576 577
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
578
			slice = max(slice * group_slice / expect_latency,
579 580 581
				    low_slice);
		}
	}
582
	cfqq->slice_start = jiffies;
583
	cfqq->slice_end = jiffies + slice;
584
	cfqq->allocated_slice = slice;
585
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
586 587 588 589 590 591 592
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
593
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
594 595 596 597 598 599 600 601 602
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

Linus Torvalds's avatar
Linus Torvalds committed
603
/*
Jens Axboe's avatar
Jens Axboe committed
604
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
Linus Torvalds's avatar
Linus Torvalds committed
605
 * We choose the request that is closest to the head right now. Distance
606
 * behind the head is penalized and only allowed to a certain extent.
Linus Torvalds's avatar
Linus Torvalds committed
607
 */
Jens Axboe's avatar
Jens Axboe committed
608
static struct request *
609
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
Linus Torvalds's avatar
Linus Torvalds committed
610
{
611
	sector_t s1, s2, d1 = 0, d2 = 0;
Linus Torvalds's avatar
Linus Torvalds committed
612
	unsigned long back_max;
613 614 615
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
Linus Torvalds's avatar
Linus Torvalds committed
616

Jens Axboe's avatar
Jens Axboe committed
617 618 619 620
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
621

Jens Axboe's avatar
Jens Axboe committed
622 623 624 625
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
626 627 628 629
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
Linus Torvalds's avatar
Linus Torvalds committed
630

631 632
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
Linus Torvalds's avatar
Linus Torvalds committed
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
649
		wrap |= CFQ_RQ1_WRAP;
Linus Torvalds's avatar
Linus Torvalds committed
650 651 652 653 654 655

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
656
		wrap |= CFQ_RQ2_WRAP;
Linus Torvalds's avatar
Linus Torvalds committed
657 658

	/* Found required data */
659 660 661 662 663 664

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
Jens Axboe's avatar
Jens Axboe committed
665
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
666
		if (d1 < d2)
Jens Axboe's avatar
Jens Axboe committed
667
			return rq1;
668
		else if (d2 < d1)
Jens Axboe's avatar
Jens Axboe committed
669
			return rq2;
670 671
		else {
			if (s1 >= s2)
Jens Axboe's avatar
Jens Axboe committed
672
				return rq1;
673
			else
Jens Axboe's avatar
Jens Axboe committed
674
				return rq2;
675
		}
Linus Torvalds's avatar
Linus Torvalds committed
676

677
	case CFQ_RQ2_WRAP:
Jens Axboe's avatar
Jens Axboe committed
678
		return rq1;
679
	case CFQ_RQ1_WRAP:
Jens Axboe's avatar
Jens Axboe committed
680 681
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
682 683 684 685 686 687 688 689
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
Jens Axboe's avatar
Jens Axboe committed
690
			return rq1;
Linus Torvalds's avatar
Linus Torvalds committed
691
		else
Jens Axboe's avatar
Jens Axboe committed
692
			return rq2;
Linus Torvalds's avatar
Linus Torvalds committed
693 694 695
	}
}

696 697 698
/*
 * The below is leftmost cache rbtree addon
 */
699
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
700
{
701 702 703 704
	/* Service tree is empty */
	if (!root->count)
		return NULL;

705 706 707
	if (!root->left)
		root->left = rb_first(&root->rb);

708 709 710 711
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
712 713
}

714 715 716 717 718 719 720 721 722 723 724
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

725 726 727 728 729 730
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

731 732 733 734
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
735
	rb_erase_init(n, &root->rb);
736
	--root->count;
737 738
}

Linus Torvalds's avatar
Linus Torvalds committed
739 740 741
/*
 * would be nice to take fifo expire time into account as well
 */
Jens Axboe's avatar
Jens Axboe committed
742 743 744
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
Linus Torvalds's avatar
Linus Torvalds committed
745
{
746 747
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
Jens Axboe's avatar
Jens Axboe committed
748
	struct request *next = NULL, *prev = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
749

750
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
Linus Torvalds's avatar
Linus Torvalds committed
751 752

	if (rbprev)
Jens Axboe's avatar
Jens Axboe committed
753
		prev = rb_entry_rq(rbprev);
Linus Torvalds's avatar
Linus Torvalds committed
754

755
	if (rbnext)
Jens Axboe's avatar
Jens Axboe committed
756
		next = rb_entry_rq(rbnext);
757 758 759
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
Jens Axboe's avatar
Jens Axboe committed
760
			next = rb_entry_rq(rbnext);
761
	}
Linus Torvalds's avatar
Linus Torvalds committed
762

763
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
Linus Torvalds's avatar
Linus Torvalds committed
764 765
}

766 767
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
Linus Torvalds's avatar
Linus Torvalds committed
768
{
769 770 771
	/*
	 * just an approximation, should be ok.
	 */
772
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
773
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
774 775
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
835
	st->total_weight += cfqg->weight;
836 837 838 839 840 841 842
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

843 844 845
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

846 847
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
848

849 850 851 852
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

853
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
854
	cfqg->on_st = false;
855
	st->total_weight -= cfqg->weight;
856 857
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
858
	cfqg->saved_workload_slice = 0;
859
	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
860 861 862 863
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
864
	unsigned int slice_used;
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
881 882
		if (slice_used > cfqq->allocated_slice)
			slice_used = cfqq->allocated_slice;
883 884
	}

885 886
	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
				cfqq->nr_sectors);
887 888 889 890 891 892 893
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
894 895 896 897 898 899
	unsigned int used_sl, charge_sl;
	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
			- cfqg->service_tree_idle.count;

	BUG_ON(nr_sync < 0);
	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
900

901 902
	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
		charge_sl = cfqq->allocated_slice;
903 904 905

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
906
	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
907 908 909 910 911 912 913 914 915 916
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
917 918 919

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
920 921
	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
						cfqq->nr_sectors);
922 923
}

924 925 926 927 928 929 930 931
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

932 933 934 935 936 937
void
cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
{
	cfqg_of_blkg(blkg)->weight = weight;
}

938 939 940 941 942 943 944 945
static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;
946 947
	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
	unsigned int major, minor;
948 949 950 951 952 953 954 955 956 957 958 959 960 961

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

962 963 964 965 966 967 968 969
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

970
	/* Add group onto cgroup list */
971 972 973
	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
					MKDEV(major, minor));
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&cfqg->blkg))
			cfq_destroy_cfqg(cfqd, cfqg);
	}
1052
}
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
 * read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if elevator was exiting, cgroup deltion
 * path got to it first.
 */
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long  flags;
	struct cfq_data *cfqd = key;

	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

1088 1089 1090
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}

1091 1092
#endif /* GROUP_IOSCHED */

1093
/*
1094
 * The cfqd->service_trees holds all pending cfq_queue's that have
1095 1096 1097
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1098
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1099
				 bool add_front)
1100
{
1101 1102
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1103
	unsigned long rb_key;
1104
	struct cfq_rb_root *service_tree;
1105
	int left;
1106
	int new_cfqq = 1;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	int group_changed = 0;

#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (!cfqd->cfq_group_isolation
	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
		/* Move this cfq to root group */
		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfqq->orig_cfqg = cfqq->cfqg;
		cfqq->cfqg = &cfqd->root_group;
		atomic_inc(&cfqd->root_group.ref);
		group_changed = 1;
	} else if (!cfqd->cfq_group_isolation
		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
		/* cfqq is sequential now needs to go to its original group */
		BUG_ON(cfqq->cfqg != &cfqd->root_group);
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfq_put_cfqg(cfqq->cfqg);
		cfqq->cfqg = cfqq->orig_cfqg;
		cfqq->orig_cfqg = NULL;
		group_changed = 1;
		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
	}
#endif
1134

1135
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1136
						cfqq_type(cfqq));
1137 1138
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1139
		parent = rb_last(&service_tree->rb);
1140 1141 1142 1143 1144 1145
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {