cfq-iosched.c 109 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
Linus Torvalds's avatar
Linus Torvalds committed
8 9
 */
#include <linux/module.h>
10
#include <linux/slab.h>
Al Viro's avatar
Al Viro committed
11 12
#include <linux/blkdev.h>
#include <linux/elevator.h>
Randy Dunlap's avatar
Randy Dunlap committed
13
#include <linux/jiffies.h>
Linus Torvalds's avatar
Linus Torvalds committed
14
#include <linux/rbtree.h>
15
#include <linux/ioprio.h>
16
#include <linux/blktrace_api.h>
17
#include "blk.h"
18
#include "blk-cgroup.h"
Linus Torvalds's avatar
Linus Torvalds committed
19

20 21
static struct blkio_policy_type blkio_policy_cfq;

Linus Torvalds's avatar
Linus Torvalds committed
22 23 24
/*
 * tunables
 */
25
/* max queue in one round of service */
Shaohua Li's avatar
Shaohua Li committed
26
static const int cfq_quantum = 8;
27
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
28 29 30 31
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
32
static const int cfq_slice_sync = HZ / 10;
Jens Axboe's avatar
Jens Axboe committed
33
static int cfq_slice_async = HZ / 25;
34
static const int cfq_slice_async_rq = 2;
35
static int cfq_slice_idle = HZ / 125;
36
static int cfq_group_idle = HZ / 125;
37 38
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
39

40
/*
41
 * offset from end of service tree
42
 */
43
#define CFQ_IDLE_DELAY		(HZ / 5)
44 45 46 47 48 49

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

50
#define CFQ_SLICE_SCALE		(5)
51
#define CFQ_HW_QUEUE_MIN	(5)
52
#define CFQ_SERVICE_SHIFT       12
53

54
#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
55
#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
56
#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
57
#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
58

59 60 61
#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
Linus Torvalds's avatar
Linus Torvalds committed
62

63
static struct kmem_cache *cfq_pool;
Linus Torvalds's avatar
Linus Torvalds committed
64

65 66 67 68
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

69
#define sample_valid(samples)	((samples) > 80)
70
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
71

72 73 74 75 76 77 78 79
struct cfq_ttime {
	unsigned long last_end_request;

	unsigned long ttime_total;
	unsigned long ttime_samples;
	unsigned long ttime_mean;
};

80 81 82 83 84 85 86 87 88
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
89
	unsigned count;
90
	unsigned total_weight;
91
	u64 min_vdisktime;
92
	struct cfq_ttime ttime;
93
};
94 95
#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
			.ttime = {.last_end_request = jiffies,},}
96

97 98 99 100 101
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
102
	int ref;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

126 127
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
128
	unsigned int allocated_slice;
129
	unsigned int slice_dispatch;
130 131
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
132 133 134
	unsigned long slice_end;
	long slice_resid;

135 136
	/* pending priority requests */
	int prio_pending;
137 138 139 140 141
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
142
	unsigned short ioprio_class;
143

144 145
	pid_t pid;

146
	u32 seek_history;
147 148
	sector_t last_request_pos;

149
	struct cfq_rb_root *service_tree;
Jeff Moyer's avatar
Jeff Moyer committed
150
	struct cfq_queue *new_cfqq;
151
	struct cfq_group *cfqg;
152 153
	/* Number of sectors dispatched from queue in single dispatch round */
	unsigned long nr_sectors;
154 155
};

156
/*
157
 * First index in the service_trees.
158 159 160 161
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
162 163
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
164
	CFQ_PRIO_NR,
165 166
};

167 168 169 170 171 172 173 174 175
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

176 177
/* This is per cgroup per device grouping structure */
struct cfq_group {
178 179 180 181 182
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
183
	unsigned int weight;
184 185
	unsigned int new_weight;
	bool needs_update;
186 187 188 189

	/* number of cfqq currently on this group */
	int nr_cfqq;

190
	/*
191
	 * Per group busy queues average. Useful for workload slice calc. We
192 193 194 195 196 197 198 199 200 201 202
	 * create the array for each prio class but at run time it is used
	 * only for RT and BE class and slot for IDLE class remains unused.
	 * This is primarily done to avoid confusion and a gcc warning.
	 */
	unsigned int busy_queues_avg[CFQ_PRIO_NR];
	/*
	 * rr lists of queues with requests. We maintain service trees for
	 * RT and BE classes. These trees are subdivided in subclasses
	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
	 * class there is no subclassification and all the cfq queues go on
	 * a single tree service_tree_idle.
203 204 205 206
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
207 208 209 210

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
211

212 213
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;
214
	struct cfq_ttime ttime;
215
};
216

217 218 219 220
struct cfq_io_cq {
	struct io_cq		icq;		/* must be the first member */
	struct cfq_queue	*cfqq[2];
	struct cfq_ttime	ttime;
Tejun Heo's avatar
Tejun Heo committed
221 222 223 224
	int			ioprio;		/* the current ioprio */
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	uint64_t		blkcg_id;	/* the current blkcg ID */
#endif
225 226
};

227 228 229
/*
 * Per block device queue structure
 */
Linus Torvalds's avatar
Linus Torvalds committed
230
struct cfq_data {
231
	struct request_queue *queue;
232 233
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
234
	struct cfq_group *root_group;
235

236 237
	/*
	 * The priority currently being served
238
	 */
239
	enum wl_prio_t serving_prio;
240 241
	enum wl_type_t serving_type;
	unsigned long workload_expires;
242
	struct cfq_group *serving_group;
243 244 245 246 247 248 249 250

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

251
	unsigned int busy_queues;
252
	unsigned int busy_sync_queues;
253

254 255
	int rq_in_driver;
	int rq_in_flight[2];
256 257 258 259 260

	/*
	 * queue-depth detection
	 */
	int rq_queued;
261
	int hw_tag;
262 263 264 265 266 267 268 269
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
Linus Torvalds's avatar
Linus Torvalds committed
270

271 272 273 274
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
275
	struct work_struct unplug_work;
Linus Torvalds's avatar
Linus Torvalds committed
276

277
	struct cfq_queue *active_queue;
278
	struct cfq_io_cq *active_cic;
279

280 281 282 283 284
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
285

Jens Axboe's avatar
Jens Axboe committed
286
	sector_t last_position;
Linus Torvalds's avatar
Linus Torvalds committed
287 288 289 290 291

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
292
	unsigned int cfq_fifo_expire[2];
Linus Torvalds's avatar
Linus Torvalds committed
293 294
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
295 296 297
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
298
	unsigned int cfq_group_idle;
299
	unsigned int cfq_latency;
300

301 302 303 304
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
305

306
	unsigned long last_delayed_sync;
Linus Torvalds's avatar
Linus Torvalds committed
307 308
};

309 310
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

311 312
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
313
					    enum wl_type_t type)
314
{
315 316 317
	if (!cfqg)
		return NULL;

318
	if (prio == IDLE_WORKLOAD)
319
		return &cfqg->service_tree_idle;
320

321
	return &cfqg->service_trees[prio][type];
322 323
}

Jens Axboe's avatar
Jens Axboe committed
324
enum cfqq_state_flags {
325 326
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
327
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
328 329 330 331
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
332
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
333
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
334
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
335
	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
336
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
337
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
Jens Axboe's avatar
Jens Axboe committed
338 339 340 341 342
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
343
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
Jens Axboe's avatar
Jens Axboe committed
344 345 346
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
347
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
Jens Axboe's avatar
Jens Axboe committed
348 349 350
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
351
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
Jens Axboe's avatar
Jens Axboe committed
352 353 354 355
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
356
CFQ_CFQQ_FNS(must_dispatch);
Jens Axboe's avatar
Jens Axboe committed
357 358 359 360
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
361
CFQ_CFQQ_FNS(slice_new);
362
CFQ_CFQQ_FNS(sync);
363
CFQ_CFQQ_FNS(coop);
364
CFQ_CFQQ_FNS(split_coop);
365
CFQ_CFQQ_FNS(deep);
366
CFQ_CFQQ_FNS(wait_busy);
Jens Axboe's avatar
Jens Axboe committed
367 368
#undef CFQ_CFQQ_FNS

369
#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
/* blkg state flags */
enum blkg_state_flags {
	BLKG_waiting = 0,
	BLKG_idling,
	BLKG_empty,
};

#define BLKG_FLAG_FNS(name)						\
static inline void blkio_mark_blkg_##name(				\
		struct blkio_group_stats *stats)			\
{									\
	stats->flags |= (1 << BLKG_##name);				\
}									\
static inline void blkio_clear_blkg_##name(				\
		struct blkio_group_stats *stats)			\
{									\
	stats->flags &= ~(1 << BLKG_##name);				\
}									\
static inline int blkio_blkg_##name(struct blkio_group_stats *stats)	\
{									\
	return (stats->flags & (1 << BLKG_##name)) != 0;		\
}									\

BLKG_FLAG_FNS(waiting)
BLKG_FLAG_FNS(idling)
BLKG_FLAG_FNS(empty)
#undef BLKG_FLAG_FNS

/* This should be called with the queue_lock held. */
static void blkio_update_group_wait_time(struct blkio_group_stats *stats)
{
	unsigned long long now;

	if (!blkio_blkg_waiting(stats))
		return;

	now = sched_clock();
	if (time_after64(now, stats->start_group_wait_time))
		blkg_stat_add(&stats->group_wait_time,
			      now - stats->start_group_wait_time);
	blkio_clear_blkg_waiting(stats);
}

/* This should be called with the queue_lock held. */
static void blkio_set_start_group_wait_time(struct blkio_group *blkg,
					    struct blkio_policy_type *pol,
					    struct blkio_group *curr_blkg)
{
	struct blkg_policy_data *pd = blkg->pd[pol->plid];

	if (blkio_blkg_waiting(&pd->stats))
		return;
	if (blkg == curr_blkg)
		return;
	pd->stats.start_group_wait_time = sched_clock();
	blkio_mark_blkg_waiting(&pd->stats);
}

/* This should be called with the queue_lock held. */
static void blkio_end_empty_time(struct blkio_group_stats *stats)
{
	unsigned long long now;

	if (!blkio_blkg_empty(stats))
		return;

	now = sched_clock();
	if (time_after64(now, stats->start_empty_time))
		blkg_stat_add(&stats->empty_time,
			      now - stats->start_empty_time);
	blkio_clear_blkg_empty(stats);
}

static void cfq_blkiocg_update_dequeue_stats(struct blkio_group *blkg,
					     struct blkio_policy_type *pol,
					     unsigned long dequeue)
{
	struct blkg_policy_data *pd = blkg->pd[pol->plid];

	lockdep_assert_held(blkg->q->queue_lock);

	blkg_stat_add(&pd->stats.dequeue, dequeue);
}

static void cfq_blkiocg_set_start_empty_time(struct blkio_group *blkg,
					     struct blkio_policy_type *pol)
{
	struct blkio_group_stats *stats = &blkg->pd[pol->plid]->stats;

	lockdep_assert_held(blkg->q->queue_lock);

	if (blkg_rwstat_sum(&stats->queued))
		return;

	/*
	 * group is already marked empty. This can happen if cfqq got new
	 * request in parent group and moved to this group while being added
	 * to service tree. Just ignore the event and move on.
	 */
	if (blkio_blkg_empty(stats))
		return;

	stats->start_empty_time = sched_clock();
	blkio_mark_blkg_empty(stats);
}

static void cfq_blkiocg_update_idle_time_stats(struct blkio_group *blkg,
					       struct blkio_policy_type *pol)
{
	struct blkio_group_stats *stats = &blkg->pd[pol->plid]->stats;

	lockdep_assert_held(blkg->q->queue_lock);

	if (blkio_blkg_idling(stats)) {
		unsigned long long now = sched_clock();

		if (time_after64(now, stats->start_idle_time))
			blkg_stat_add(&stats->idle_time,
				      now - stats->start_idle_time);
		blkio_clear_blkg_idling(stats);
	}
}

static void cfq_blkiocg_update_set_idle_time_stats(struct blkio_group *blkg,
						   struct blkio_policy_type *pol)
{
	struct blkio_group_stats *stats = &blkg->pd[pol->plid]->stats;

	lockdep_assert_held(blkg->q->queue_lock);
	BUG_ON(blkio_blkg_idling(stats));

	stats->start_idle_time = sched_clock();
	blkio_mark_blkg_idling(stats);
}

static void cfq_blkiocg_update_avg_queue_size_stats(struct blkio_group *blkg,
						    struct blkio_policy_type *pol)
{
	struct blkio_group_stats *stats = &blkg->pd[pol->plid]->stats;

	lockdep_assert_held(blkg->q->queue_lock);

	blkg_stat_add(&stats->avg_queue_size_sum,
		      blkg_rwstat_sum(&stats->queued));
	blkg_stat_add(&stats->avg_queue_size_samples, 1);
	blkio_update_group_wait_time(stats);
}

#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */

static void blkio_set_start_group_wait_time(struct blkio_group *blkg,
					    struct blkio_policy_type *pol,
					    struct blkio_group *curr_blkg) { }
static void blkio_end_empty_time(struct blkio_group_stats *stats) { }
static void cfq_blkiocg_update_dequeue_stats(struct blkio_group *blkg,
					     struct blkio_policy_type *pol,
					     unsigned long dequeue) { }
static void cfq_blkiocg_set_start_empty_time(struct blkio_group *blkg,
					     struct blkio_policy_type *pol) { }
static void cfq_blkiocg_update_idle_time_stats(struct blkio_group *blkg,
					       struct blkio_policy_type *pol) { }
static void cfq_blkiocg_update_set_idle_time_stats(struct blkio_group *blkg,
						   struct blkio_policy_type *pol) { }
static void cfq_blkiocg_update_avg_queue_size_stats(struct blkio_group *blkg,
						    struct blkio_policy_type *pol) { }

#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */

#ifdef CONFIG_CFQ_GROUP_IOSCHED
540

541 542 543 544 545 546 547
static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
{
	return blkg_to_pdata(blkg, &blkio_policy_cfq);
}

static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
{
548
	return pdata_to_blkg(cfqg);
549 550 551 552 553 554 555 556 557 558 559 560
}

static inline void cfqg_get(struct cfq_group *cfqg)
{
	return blkg_get(cfqg_to_blkg(cfqg));
}

static inline void cfqg_put(struct cfq_group *cfqg)
{
	return blkg_put(cfqg_to_blkg(cfqg));
}

561 562 563
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
564
			blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
565 566 567

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
568
			blkg_path(cfqg_to_blkg((cfqg))), ##args)	\
569

570 571 572 573 574
static inline void cfq_blkiocg_update_io_add_stats(struct blkio_group *blkg,
			struct blkio_policy_type *pol,
			struct blkio_group *curr_blkg,
			bool direction, bool sync)
{
575 576
	struct blkio_group_stats *stats = &blkg->pd[pol->plid]->stats;
	int rw = (direction ? REQ_WRITE : 0) | (sync ? REQ_SYNC : 0);
577

578 579 580 581 582
	lockdep_assert_held(blkg->q->queue_lock);

	blkg_rwstat_add(&stats->queued, rw, 1);
	blkio_end_empty_time(stats);
	blkio_set_start_group_wait_time(blkg, pol, curr_blkg);
583 584 585 586 587 588
}

static inline void cfq_blkiocg_update_timeslice_used(struct blkio_group *blkg,
			struct blkio_policy_type *pol, unsigned long time,
			unsigned long unaccounted_time)
{
589
	struct blkio_group_stats *stats = &blkg->pd[pol->plid]->stats;
590

591 592 593 594 595 596
	lockdep_assert_held(blkg->q->queue_lock);

	blkg_stat_add(&stats->time, time);
#ifdef CONFIG_DEBUG_BLK_CGROUP
	blkg_stat_add(&stats->unaccounted_time, unaccounted_time);
#endif
597 598 599 600 601 602
}

static inline void cfq_blkiocg_update_io_remove_stats(struct blkio_group *blkg,
			struct blkio_policy_type *pol, bool direction,
			bool sync)
{
603 604 605 606 607 608
	struct blkio_group_stats *stats = &blkg->pd[pol->plid]->stats;
	int rw = (direction ? REQ_WRITE : 0) | (sync ? REQ_SYNC : 0);

	lockdep_assert_held(blkg->q->queue_lock);

	blkg_rwstat_add(&stats->queued, rw, -1);
609 610 611 612 613 614
}

static inline void cfq_blkiocg_update_io_merged_stats(struct blkio_group *blkg,
			struct blkio_policy_type *pol, bool direction,
			bool sync)
{
615 616
	struct blkio_group_stats *stats = &blkg->pd[pol->plid]->stats;
	int rw = (direction ? REQ_WRITE : 0) | (sync ? REQ_SYNC : 0);
617

618
	lockdep_assert_held(blkg->q->queue_lock);
619

620
	blkg_rwstat_add(&stats->merged, rw, 1);
621 622 623 624 625 626
}

static inline void cfq_blkiocg_update_dispatch_stats(struct blkio_group *blkg,
			struct blkio_policy_type *pol, uint64_t bytes,
			bool direction, bool sync)
{
627
	struct blkio_group_stats *stats = &blkg->pd[pol->plid]->stats;
628 629
	int rw = (direction ? REQ_WRITE : 0) | (sync ? REQ_SYNC : 0);

630 631 632
	blkg_stat_add(&stats->sectors, bytes >> 9);
	blkg_rwstat_add(&stats->serviced, rw, 1);
	blkg_rwstat_add(&stats->service_bytes, rw, bytes);
633 634 635 636 637 638
}

static inline void cfq_blkiocg_update_completion_stats(struct blkio_group *blkg,
			struct blkio_policy_type *pol, uint64_t start_time,
			uint64_t io_start_time, bool direction, bool sync)
{
639 640 641 642 643 644 645 646 647 648 649
	struct blkio_group_stats *stats = &blkg->pd[pol->plid]->stats;
	unsigned long long now = sched_clock();
	int rw = (direction ? REQ_WRITE : 0) | (sync ? REQ_SYNC : 0);

	lockdep_assert_held(blkg->q->queue_lock);

	if (time_after64(now, io_start_time))
		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
	if (time_after64(io_start_time, start_time))
		blkg_rwstat_add(&stats->wait_time, rw,
				io_start_time - start_time);
650 651
}

652 653 654 655 656 657 658
#else	/* CONFIG_CFQ_GROUP_IOSCHED */

static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
static inline void cfqg_get(struct cfq_group *cfqg) { }
static inline void cfqg_put(struct cfq_group *cfqg) { }

659 660
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
661
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
662

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static inline void cfq_blkiocg_update_io_add_stats(struct blkio_group *blkg,
			struct blkio_policy_type *pol,
			struct blkio_group *curr_blkg, bool direction,
			bool sync) { }
static inline void cfq_blkiocg_update_timeslice_used(struct blkio_group *blkg,
			struct blkio_policy_type *pol, unsigned long time,
			unsigned long unaccounted_time) { }
static inline void cfq_blkiocg_update_io_remove_stats(struct blkio_group *blkg,
			struct blkio_policy_type *pol, bool direction,
			bool sync) { }
static inline void cfq_blkiocg_update_io_merged_stats(struct blkio_group *blkg,
			struct blkio_policy_type *pol, bool direction,
			bool sync) { }
static inline void cfq_blkiocg_update_dispatch_stats(struct blkio_group *blkg,
			struct blkio_policy_type *pol, uint64_t bytes,
			bool direction, bool sync) { }
static inline void cfq_blkiocg_update_completion_stats(struct blkio_group *blkg,
			struct blkio_policy_type *pol, uint64_t start_time,
			uint64_t io_start_time, bool direction, bool sync) { }

683 684
#endif	/* CONFIG_CFQ_GROUP_IOSCHED */

685 686 687
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

688 689 690 691 692 693 694 695 696 697
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \

698 699 700 701 702 703 704 705 706 707 708 709
static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
	struct cfq_ttime *ttime, bool group_idle)
{
	unsigned long slice;
	if (!sample_valid(ttime->ttime_samples))
		return false;
	if (group_idle)
		slice = cfqd->cfq_group_idle;
	else
		slice = cfqd->cfq_slice_idle;
	return ttime->ttime_mean > slice;
}
710

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
static inline bool iops_mode(struct cfq_data *cfqd)
{
	/*
	 * If we are not idling on queues and it is a NCQ drive, parallel
	 * execution of requests is on and measuring time is not possible
	 * in most of the cases until and unless we drive shallower queue
	 * depths and that becomes a performance bottleneck. In such cases
	 * switch to start providing fairness in terms of number of IOs.
	 */
	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
		return true;
	else
		return false;
}

726 727 728 729 730 731 732 733 734
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

735 736 737 738 739 740 741 742 743 744

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

745 746 747
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
748 749
{
	if (wl == IDLE_WORKLOAD)
750
		return cfqg->service_tree_idle.count;
751

752 753 754
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
755 756
}

757 758 759 760 761 762 763
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

764
static void cfq_dispatch_insert(struct request_queue *, struct request *);
765
static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
766
				       struct cfq_io_cq *cic, struct bio *bio,
767
				       gfp_t gfp_mask);
768

769 770 771 772 773 774
static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
{
	/* cic->icq is the first member, %NULL will convert to %NULL */
	return container_of(icq, struct cfq_io_cq, icq);
}

775 776 777 778 779 780 781 782
static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
					       struct io_context *ioc)
{
	if (ioc)
		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
	return NULL;
}

783
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
784
{
785
	return cic->cfqq[is_sync];
786 787
}

788 789
static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
				bool is_sync)
790
{
791
	cic->cfqq[is_sync] = cfqq;
792 793
}

794
static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
795
{
796
	return cic->icq.q->elevator->elevator_data;
797 798
}

799 800 801 802
/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
803
static inline bool cfq_bio_sync(struct bio *bio)
804
{
805
	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
806
}
Linus Torvalds's avatar
Linus Torvalds committed
807

Andrew Morton's avatar
Andrew Morton committed
808 809 810 811
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
812
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
Andrew Morton's avatar
Andrew Morton committed
813
{
814 815
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
816
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
817
	}
Andrew Morton's avatar
Andrew Morton committed
818 819
}

820 821 822 823 824
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
825
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
826
				 unsigned short prio)
827
{
828
	const int base_slice = cfqd->cfq_slice[sync];
829

830 831 832 833
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
834

835 836 837 838
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
839 840
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	struct cfq_group *cfqg;

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
874 875
		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
						  cfqg->vdisktime);
876 877 878
	}
}

879 880 881 882 883 884
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

885 886
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
887
{
888 889 890
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
891
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
892

893 894 895
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
896
		cfq_hist_divisor;
897 898 899 900 901 902 903 904 905
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
906 907
}

908
static inline unsigned
909
cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
910
{
911 912
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
913 914 915 916 917 918
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
919 920
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
921 922 923
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
924 925 926 927 928 929 930
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
931
			slice = max(slice * group_slice / expect_latency,
932 933 934
				    low_slice);
		}
	}
935 936 937 938 939 940
	return slice;
}

static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
941
	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
942

943
	cfqq->slice_start = jiffies;
944
	cfqq->slice_end = jiffies + slice;
945
	cfqq->allocated_slice = slice;
946
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
947 948 949 950 951 952 953
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
954
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
955 956
{
	if (cfq_cfqq_slice_new(cfqq))
Shaohua Li's avatar
Shaohua Li committed
957
		return false;
958
	if (time_before(jiffies, cfqq->slice_end))
Shaohua Li's avatar
Shaohua Li committed
959
		return false;
960

Shaohua Li's avatar
Shaohua Li committed
961
	return true;
962 963
}

Linus Torvalds's avatar
Linus Torvalds committed
964
/*
Jens Axboe's avatar
Jens Axboe committed
965
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
Linus Torvalds's avatar
Linus Torvalds committed
966
 * We choose the request that is closest to the head right now. Distance
967
 * behind the head is penalized and only allowed to a certain extent.
Linus Torvalds's avatar
Linus Torvalds committed
968
 */
Jens Axboe's avatar
Jens Axboe committed
969
static struct request *
970
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
Linus Torvalds's avatar
Linus Torvalds committed
971
{
972
	sector_t s1, s2, d1 = 0, d2 = 0;
Linus Torvalds's avatar
Linus Torvalds committed
973
	unsigned long back_max;
974 975 976
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
Linus Torvalds's avatar
Linus Torvalds committed
977

Jens Axboe's avatar
Jens Axboe committed
978 979 980 981
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
982

983 984 985
	if (rq_is_sync(rq1) != rq_is_sync(rq2))
		return rq_is_sync(rq1) ? rq1 : rq2;

986 987
	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
988

989 990
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
Linus Torvalds's avatar
Linus Torvalds committed
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
1007
		wrap |= CFQ_RQ1_WRAP;
Linus Torvalds's avatar
Linus Torvalds committed
1008 1009 1010 1011 1012 1013

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
1014
		wrap |= CFQ_RQ2_WRAP;
Linus Torvalds's avatar
Linus Torvalds committed
1015 1016

	/* Found required data */
1017 1018 1019 1020 1021 1022

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
Jens Axboe's avatar
Jens Axboe committed
1023
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1024
		if (d1 < d2)
Jens Axboe's avatar
Jens Axboe committed
1025
			return rq1;
1026
		else if (d2 < d1)
Jens Axboe's avatar
Jens Axboe committed
1027
			return rq2;
1028 1029
		else {
			if (s1 >= s2)
Jens Axboe's avatar
Jens Axboe committed
1030
				return rq1;
1031
			else
Jens Axboe's avatar
Jens Axboe committed
1032
				return rq2;
1033
		}
Linus Torvalds's avatar
Linus Torvalds committed
1034

1035
	case CFQ_RQ2_WRAP:
Jens Axboe's avatar
Jens Axboe committed
1036
		return rq1;
1037
	case CFQ_RQ1_WRAP:
Jens Axboe's avatar
Jens Axboe committed
1038 1039
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1040 1041 1042 1043 1044 1045 1046 1047
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
Jens Axboe's avatar
Jens Axboe committed
1048
			return rq1;
Linus Torvalds's avatar
Linus Torvalds committed
1049
		else
Jens Axboe's avatar
Jens Axboe committed
1050
			return rq2;
Linus Torvalds's avatar
Linus Torvalds committed
1051 1052 1053
	}
}

1054 1055 1056
/*
 * The below is leftmost cache rbtree addon
 */
1057
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1058
{
1059 1060 1061 1062
	/* Service tree is empty */
	if (!root->count)
		return NULL;

1063 1064 1065
	if (!root->left)
		root->left = rb_first(&root->rb);

1066 1067 1068 1069
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
1070 1071
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

1083 1084 1085 1086 1087 1088
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

1089 1090 1091 1092
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
1093
	rb_erase_init(n, &root->rb);
1094
	--root->count;
1095 1096
}

Linus Torvalds's avatar
Linus Torvalds committed
1097 1098 1099
/*
 * would be nice to take fifo expire time into account as well
 */
Jens Axboe's avatar
Jens Axboe committed
1100 1101 1102
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
Linus Torvalds's avatar
Linus Torvalds committed
1103
{
1104 1105
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
Jens Axboe's avatar
Jens Axboe committed
1106
	struct request *next = NULL, *prev = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1107

1108
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
Linus Torvalds's avatar
Linus Torvalds committed
1109 1110

	if (rbprev)
Jens Axboe's avatar
Jens Axboe committed
1111
		prev = rb_entry_rq(rbprev);
Linus Torvalds's avatar
Linus Torvalds committed
1112

1113
	if (rbnext)
Jens Axboe's avatar
Jens Axboe committed
1114
		next = rb_entry_rq(rbnext);
1115 1116 1117
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
Jens Axboe's avatar
Jens Axboe committed
1118
			next = rb_entry_rq(rbnext);
1119
	}
Linus Torvalds's avatar
Linus Torvalds committed
1120

1121
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
Linus Torvalds's avatar
Linus Torvalds committed
1122 1123
}

1124 1125
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
Linus Torvalds's avatar
Linus Torvalds committed
1126
{