cfq-iosched.c 91.2 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
Linus Torvalds's avatar
Linus Torvalds committed
8 9
 */
#include <linux/module.h>
Al Viro's avatar
Al Viro committed
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
Randy Dunlap's avatar
Randy Dunlap committed
12
#include <linux/jiffies.h>
Linus Torvalds's avatar
Linus Torvalds committed
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
Linus Torvalds's avatar
Linus Torvalds committed
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
Jens Axboe's avatar
Jens Axboe committed
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45 46 47 48 49 50
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

51
#define CFQ_SLICE_SCALE		(5)
52
#define CFQ_HW_QUEUE_MIN	(5)
53
#define CFQ_SERVICE_SHIFT       12
54

55 56
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
57
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
Linus Torvalds's avatar
Linus Torvalds committed
58

59 60
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
Linus Torvalds's avatar
Linus Torvalds committed
61

62
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63
static struct completion *ioc_gone;
64
static DEFINE_SPINLOCK(ioc_gone_lock);
65

66 67 68 69
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

70
#define sample_valid(samples)	((samples) > 80)
71
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72

73 74 75 76 77 78 79 80 81
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
82
	unsigned count;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
	unsigned total_weight;
86
};
87
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

118 119 120 121
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
122 123 124 125 126 127 128 129 130 131 132 133 134
	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

135 136 137 138
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
139
	unsigned long seeky_start;
140

141
	pid_t pid;
Jeff Moyer's avatar
Jeff Moyer committed
142

143
	struct cfq_rb_root *service_tree;
Jeff Moyer's avatar
Jeff Moyer committed
144
	struct cfq_queue *new_cfqq;
145
	struct cfq_group *cfqg;
146 147
};

148
/*
149
 * First index in the service_trees.
150 151 152 153
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
154 155
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
156 157
};

158 159 160 161 162 163 164 165 166
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

167 168
/* This is per cgroup per device grouping structure */
struct cfq_group {
169 170 171 172 173
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
174
	unsigned int weight;
175 176 177 178 179
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

180 181
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
182 183 184 185 186 187
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
188 189 190 191

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
192 193 194
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
195
	atomic_t ref;
196
#endif
197
};
198

199 200 201
/*
 * Per block device queue structure
 */
Linus Torvalds's avatar
Linus Torvalds committed
202
struct cfq_data {
203
	struct request_queue *queue;
204 205
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
206
	struct cfq_group root_group;
207 208
	/* Number of active cfq groups on group service tree */
	int nr_groups;
209

210 211
	/*
	 * The priority currently being served
212
	 */
213
	enum wl_prio_t serving_prio;
214 215
	enum wl_type_t serving_type;
	unsigned long workload_expires;
216
	struct cfq_group *serving_group;
217
	bool noidle_tree_requires_idle;
218 219 220 221 222 223 224 225

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

226 227
	unsigned int busy_queues;

228
	int rq_in_driver[2];
229
	int sync_flight;
230 231 232 233 234

	/*
	 * queue-depth detection
	 */
	int rq_queued;
235
	int hw_tag;
236 237 238 239 240 241 242 243
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
Linus Torvalds's avatar
Linus Torvalds committed
244

245 246 247 248
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
249
	struct work_struct unplug_work;
Linus Torvalds's avatar
Linus Torvalds committed
250

251 252 253
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

254 255 256 257 258
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
259

Jens Axboe's avatar
Jens Axboe committed
260
	sector_t last_position;
Linus Torvalds's avatar
Linus Torvalds committed
261 262 263 264 265

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
266
	unsigned int cfq_fifo_expire[2];
Linus Torvalds's avatar
Linus Torvalds committed
267 268
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
269 270 271
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
272
	unsigned int cfq_latency;
273 274

	struct list_head cic_list;
Linus Torvalds's avatar
Linus Torvalds committed
275

276 277 278 279
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
280 281

	unsigned long last_end_sync_rq;
282 283 284

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
Linus Torvalds's avatar
Linus Torvalds committed
285 286
};

287 288
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

289 290
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
291
					    enum wl_type_t type,
292 293
					    struct cfq_data *cfqd)
{
294 295 296
	if (!cfqg)
		return NULL;

297
	if (prio == IDLE_WORKLOAD)
298
		return &cfqg->service_tree_idle;
299

300
	return &cfqg->service_trees[prio][type];
301 302
}

Jens Axboe's avatar
Jens Axboe committed
303
enum cfqq_state_flags {
304 305
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
306
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
307 308 309 310
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
311
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
312
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
313
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
314
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
Jens Axboe's avatar
Jens Axboe committed
315 316 317 318 319
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
320
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
Jens Axboe's avatar
Jens Axboe committed
321 322 323
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
324
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
Jens Axboe's avatar
Jens Axboe committed
325 326 327
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
328
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
Jens Axboe's avatar
Jens Axboe committed
329 330 331 332
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
333
CFQ_CFQQ_FNS(must_dispatch);
Jens Axboe's avatar
Jens Axboe committed
334 335 336 337
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
338
CFQ_CFQQ_FNS(slice_new);
339
CFQ_CFQQ_FNS(sync);
340
CFQ_CFQQ_FNS(coop);
341
CFQ_CFQQ_FNS(deep);
Jens Axboe's avatar
Jens Axboe committed
342 343
#undef CFQ_CFQQ_FNS

344 345 346 347 348
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

349 350 351 352 353 354 355 356 357 358 359
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


360 361 362 363 364 365 366 367 368
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

369 370 371 372 373 374 375 376 377 378

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

379 380 381
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
382 383
{
	if (wl == IDLE_WORKLOAD)
384
		return cfqg->service_tree_idle.count;
385

386 387 388
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
389 390
}

391
static void cfq_dispatch_insert(struct request_queue *, struct request *);
392
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
393
				       struct io_context *, gfp_t);
394
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
395 396
						struct io_context *);

397 398 399 400 401
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

402
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
403
					    bool is_sync)
404
{
405
	return cic->cfqq[is_sync];
406 407 408
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
409
				struct cfq_queue *cfqq, bool is_sync)
410
{
411
	cic->cfqq[is_sync] = cfqq;
412 413 414 415 416 417
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
418
static inline bool cfq_bio_sync(struct bio *bio)
419
{
420
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
421
}
Linus Torvalds's avatar
Linus Torvalds committed
422

Andrew Morton's avatar
Andrew Morton committed
423 424 425 426
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
427
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
Andrew Morton's avatar
Andrew Morton committed
428
{
429 430
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
431
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
432
	}
Andrew Morton's avatar
Andrew Morton committed
433 434
}

435
static int cfq_queue_empty(struct request_queue *q)
Andrew Morton's avatar
Andrew Morton committed
436 437 438
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

439
	return !cfqd->rq_queued;
Andrew Morton's avatar
Andrew Morton committed
440 441
}

442 443 444 445 446
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
447
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
448
				 unsigned short prio)
449
{
450
	const int base_slice = cfqd->cfq_slice[sync];
451

452 453 454 455
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
456

457 458 459 460
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
461 462
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

508 509 510 511 512 513
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

514 515
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
516
{
517 518 519
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
520
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
521

522 523 524
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
525
		cfq_hist_divisor;
526 527 528 529 530 531 532 533 534
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
535 536
}

537 538 539
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
540 541
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
542 543 544 545 546 547
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
548 549
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
550 551 552
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
553 554 555 556 557 558 559
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
560
			slice = max(slice * group_slice / expect_latency,
561 562 563
				    low_slice);
		}
	}
564
	cfqq->slice_start = jiffies;
565
	cfqq->slice_end = jiffies + slice;
566
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
567 568 569 570 571 572 573
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
574
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
575 576 577 578 579 580 581 582 583
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

Linus Torvalds's avatar
Linus Torvalds committed
584
/*
Jens Axboe's avatar
Jens Axboe committed
585
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
Linus Torvalds's avatar
Linus Torvalds committed
586
 * We choose the request that is closest to the head right now. Distance
587
 * behind the head is penalized and only allowed to a certain extent.
Linus Torvalds's avatar
Linus Torvalds committed
588
 */
Jens Axboe's avatar
Jens Axboe committed
589
static struct request *
590
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
Linus Torvalds's avatar
Linus Torvalds committed
591
{
592
	sector_t s1, s2, d1 = 0, d2 = 0;
Linus Torvalds's avatar
Linus Torvalds committed
593
	unsigned long back_max;
594 595 596
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
Linus Torvalds's avatar
Linus Torvalds committed
597

Jens Axboe's avatar
Jens Axboe committed
598 599 600 601
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
602

Jens Axboe's avatar
Jens Axboe committed
603 604 605 606
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
607 608 609 610
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
Linus Torvalds's avatar
Linus Torvalds committed
611

612 613
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
Linus Torvalds's avatar
Linus Torvalds committed
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
630
		wrap |= CFQ_RQ1_WRAP;
Linus Torvalds's avatar
Linus Torvalds committed
631 632 633 634 635 636

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
637
		wrap |= CFQ_RQ2_WRAP;
Linus Torvalds's avatar
Linus Torvalds committed
638 639

	/* Found required data */
640 641 642 643 644 645

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
Jens Axboe's avatar
Jens Axboe committed
646
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
647
		if (d1 < d2)
Jens Axboe's avatar
Jens Axboe committed
648
			return rq1;
649
		else if (d2 < d1)
Jens Axboe's avatar
Jens Axboe committed
650
			return rq2;
651 652
		else {
			if (s1 >= s2)
Jens Axboe's avatar
Jens Axboe committed
653
				return rq1;
654
			else
Jens Axboe's avatar
Jens Axboe committed
655
				return rq2;
656
		}
Linus Torvalds's avatar
Linus Torvalds committed
657

658
	case CFQ_RQ2_WRAP:
Jens Axboe's avatar
Jens Axboe committed
659
		return rq1;
660
	case CFQ_RQ1_WRAP:
Jens Axboe's avatar
Jens Axboe committed
661 662
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
663 664 665 666 667 668 669 670
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
Jens Axboe's avatar
Jens Axboe committed
671
			return rq1;
Linus Torvalds's avatar
Linus Torvalds committed
672
		else
Jens Axboe's avatar
Jens Axboe committed
673
			return rq2;
Linus Torvalds's avatar
Linus Torvalds committed
674 675 676
	}
}

677 678 679
/*
 * The below is leftmost cache rbtree addon
 */
680
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
681
{
682 683 684 685
	/* Service tree is empty */
	if (!root->count)
		return NULL;

686 687 688
	if (!root->left)
		root->left = rb_first(&root->rb);

689 690 691 692
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
693 694
}

695 696 697 698 699 700 701 702 703 704 705
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

706 707 708 709 710 711
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

712 713 714 715
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
716
	rb_erase_init(n, &root->rb);
717
	--root->count;
718 719
}

Linus Torvalds's avatar
Linus Torvalds committed
720 721 722
/*
 * would be nice to take fifo expire time into account as well
 */
Jens Axboe's avatar
Jens Axboe committed
723 724 725
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
Linus Torvalds's avatar
Linus Torvalds committed
726
{
727 728
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
Jens Axboe's avatar
Jens Axboe committed
729
	struct request *next = NULL, *prev = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
730

731
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
Linus Torvalds's avatar
Linus Torvalds committed
732 733

	if (rbprev)
Jens Axboe's avatar
Jens Axboe committed
734
		prev = rb_entry_rq(rbprev);
Linus Torvalds's avatar
Linus Torvalds committed
735

736
	if (rbnext)
Jens Axboe's avatar
Jens Axboe committed
737
		next = rb_entry_rq(rbnext);
738 739 740
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
Jens Axboe's avatar
Jens Axboe committed
741
			next = rb_entry_rq(rbnext);
742
	}
Linus Torvalds's avatar
Linus Torvalds committed
743

744
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
Linus Torvalds's avatar
Linus Torvalds committed
745 746
}

747 748
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
Linus Torvalds's avatar
Linus Torvalds committed
749
{
750 751 752
	/*
	 * just an approximation, should be ok.
	 */
753
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
754
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
755 756
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
816 817
	cfqd->nr_groups++;
	st->total_weight += cfqg->weight;
818 819 820 821 822 823 824
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

825 826 827
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

828 829
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
830

831 832 833 834 835
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

	cfqg->on_st = false;
836 837
	cfqd->nr_groups--;
	st->total_weight -= cfqg->weight;
838 839
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	cfqg->saved_workload_slice = 0;
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
	unsigned int slice_used, allocated_slice;

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
		allocated_slice = cfqq->slice_end - cfqq->slice_start;
		if (slice_used > allocated_slice)
			slice_used = allocated_slice;
	}

	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	unsigned int used_sl;

	used_sl = cfq_cfqq_slice_usage(cfqq);

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
	cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
892 893
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;

	/* Do we need to take this reference */
	if (!css_tryget(&blkcg->css))
		return NULL;;

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

928 929 930 931 932 933 934 935
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	/* Add group onto cgroup list */
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd);

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
	css_put(&blkcg->css);
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&cfqg->blkg))
			cfq_destroy_cfqg(cfqd, cfqg);
	}
1017
}
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
 * read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if elevator was exiting, cgroup deltion
 * path got to it first.
 */
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long  flags;
	struct cfq_data *cfqd = key;

	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

1053 1054 1055
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}

1056 1057
#endif /* GROUP_IOSCHED */

1058
/*
1059
 * The cfqd->service_trees holds all pending cfq_queue's that have
1060 1061 1062
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1063
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1064
				 bool add_front)
1065
{
1066 1067
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1068
	unsigned long rb_key;
1069
	struct cfq_rb_root *service_tree;
1070
	int left;
1071
	int new_cfqq = 1;
1072

1073 1074
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
1075 1076
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1077
		parent = rb_last(&service_tree->rb);
1078 1079 1080 1081 1082 1083
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1084 1085 1086 1087 1088 1089
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1090
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1091
		rb_key -= cfqq->slice_resid;
1092
		cfqq->slice_resid = 0;
1093 1094
	} else {
		rb_key = -HZ;
1095
		__cfqq = cfq_rb_first(service_tree);
1096 1097
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
Linus Torvalds's avatar
Linus Torvalds committed
1098

1099
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1100
		new_cfqq = 0;
1101
		/*
1102
		 * same position, nothing more to do
1103
		 */
1104 1105
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1106
			return;
Linus Torvalds's avatar
Linus Torvalds committed
1107

1108 1109
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1110
	}
1111

1112
	left = 1;
1113
	parent = NULL;
1114 1115
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1116
	while (*p) {
1117
		struct rb_node **n;
1118

1119 1120 1121
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1122
		/*
1123
		 * sort by key, that represents service time.
1124
		 */
1125
		if (time_before(rb_key, __cfqq->rb_key))
1126
			n = &(*p)->rb_left;
1127
		else {
1128
			n = &(*p)->rb_right;
1129
			left = 0;
1130
		}
1131 1132

		p = n;
1133 1134
	}

1135
	if (left)
1136
		service_tree->left = &cfqq->rb_node;
1137

1138 1139
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1140 1141
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1142 1143
	if (add_front || !new_cfqq)
		return;
1144
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
Linus Torvalds's avatar
Linus Torvalds committed
1145