cpuset.c 69.8 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
Paul Jackson's avatar
Paul Jackson committed
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
Linus Torvalds's avatar
Linus Torvalds committed
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
Linus Torvalds's avatar
Linus Torvalds committed
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
Linus Torvalds's avatar
Linus Torvalds committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
35
#include <linux/mempolicy.h>
Linus Torvalds's avatar
Linus Torvalds committed
36 37 38 39 40 41
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
42
#include <linux/rcupdate.h>
Linus Torvalds's avatar
Linus Torvalds committed
43 44
#include <linux/sched.h>
#include <linux/seq_file.h>
45
#include <linux/security.h>
Linus Torvalds's avatar
Linus Torvalds committed
46 47 48 49 50 51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
56
#include <linux/mutex.h>
57 58
#include <linux/workqueue.h>
#include <linux/cgroup.h>
Linus Torvalds's avatar
Linus Torvalds committed
59

60 61 62 63 64
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
65
int number_of_cpusets __read_mostly;
66

67
/* Forward declare cgroup structures */
68 69 70
struct cgroup_subsys cpuset_subsys;
struct cpuset;

71 72 73 74 75 76 77 78 79
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

Linus Torvalds's avatar
Linus Torvalds committed
80
struct cpuset {
81 82
	struct cgroup_subsys_state css;

Linus Torvalds's avatar
Linus Torvalds committed
83 84 85 86 87 88 89 90 91 92
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
93 94 95
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
Paul Jackson's avatar
Paul Jackson committed
96 97 98

	/* partition number for rebuild_sched_domains() */
	int pn;
99

100 101 102
	/* for custom sched domain */
	int relax_domain_level;

103 104
	/* used for walking a cpuset heirarchy */
	struct list_head stack_list;
Linus Torvalds's avatar
Linus Torvalds committed
105 106
};

107 108 109 110 111 112 113 114 115 116 117 118 119
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}
120 121 122 123
struct cpuset_hotplug_scanner {
	struct cgroup_scanner scan;
	struct cgroup *to;
};
124

Linus Torvalds's avatar
Linus Torvalds committed
125 126 127 128
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
129
	CS_MEM_HARDWALL,
130
	CS_MEMORY_MIGRATE,
Paul Jackson's avatar
Paul Jackson committed
131
	CS_SCHED_LOAD_BALANCE,
132 133
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
134 135 136 137 138
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
139
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
140 141 142 143
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
144
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
145 146
}

147 148 149 150 151
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

Paul Jackson's avatar
Paul Jackson committed
152 153 154 155 156
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

157 158
static inline int is_memory_migrate(const struct cpuset *cs)
{
159
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
160 161
}

162 163 164 165 166 167 168 169 170 171
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

Linus Torvalds's avatar
Linus Torvalds committed
172
/*
173
 * Increment this integer everytime any cpuset changes its
Linus Torvalds's avatar
Linus Torvalds committed
174 175 176 177
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
178
 * A single, global generation is needed because cpuset_attach_task() could
Linus Torvalds's avatar
Linus Torvalds committed
179 180 181 182
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
183
 * modify another's memory placement.  So we must enable every task,
Linus Torvalds's avatar
Linus Torvalds committed
184 185 186
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
187
 *
188
 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
189
 * there is no need to mark it atomic.
Linus Torvalds's avatar
Linus Torvalds committed
190
 */
191
static int cpuset_mems_generation;
Linus Torvalds's avatar
Linus Torvalds committed
192 193 194 195 196 197 198 199

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
};

/*
200 201 202 203 204 205 206
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
207
 *
208
 * A task must hold both mutexes to modify cpusets.  If a task
209
 * holds cgroup_mutex, then it blocks others wanting that mutex,
210
 * ensuring that it is the only task able to also acquire callback_mutex
211 212
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
213
 * also allocate memory while just holding cgroup_mutex.  While it is
214
 * performing these checks, various callback routines can briefly
215 216
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
217 218
 *
 * Calls to the kernel memory allocator can not be made while holding
219
 * callback_mutex, as that would risk double tripping on callback_mutex
220 221 222
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
223
 * If a task is only holding callback_mutex, then it has read-only
224 225 226 227 228
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
229
 * The cpuset_common_file_read() handlers only hold callback_mutex across
230 231 232
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
233 234
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
Linus Torvalds's avatar
Linus Torvalds committed
235 236
 */

237
static DEFINE_MUTEX(callback_mutex);
238

239 240 241
/* This is ugly, but preserves the userspace API for existing cpuset
 * users. If someone tries to mount the "cpuset" filesystem, we
 * silently switch it to mount "cgroup" instead */
242 243 244
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
Linus Torvalds's avatar
Linus Torvalds committed
245
{
246 247 248 249 250 251 252 253 254 255 256
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
275
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
291 292 293 294
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
295 296
 *
 * One way or another, we guarantee to return some non-empty subset
297
 * of node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
298
 *
299
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
300 301 302 303
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
304 305
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
Linus Torvalds's avatar
Linus Torvalds committed
306 307
		cs = cs->parent;
	if (cs)
308 309
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
Linus Torvalds's avatar
Linus Torvalds committed
310
	else
311 312
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
Linus Torvalds's avatar
Linus Torvalds committed
313 314
}

315 316 317 318 319 320
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
321
 *
322 323 324 325
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
326
 * Call without callback_mutex or task_lock() held.  May be
327 328
 * called with or without cgroup_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the task's cpuset pointer will never
David Rientjes's avatar
David Rientjes committed
329 330
 * be NULL.  This routine also might acquire callback_mutex during
 * call.
331
 *
332 333
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
334
 * from concurrent freeing of current->cpuset using RCU.
335 336 337 338 339 340 341 342 343 344 345 346 347 348
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
349 350 351 352 353
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
Linus Torvalds's avatar
Linus Torvalds committed
354 355
 */

356
void cpuset_update_task_memory_state(void)
Linus Torvalds's avatar
Linus Torvalds committed
357
{
358
	int my_cpusets_mem_gen;
359
	struct task_struct *tsk = current;
360
	struct cpuset *cs;
361

362
	if (task_cs(tsk) == &top_cpuset) {
363 364 365 366
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
367
		my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
368 369
		rcu_read_unlock();
	}
Linus Torvalds's avatar
Linus Torvalds committed
370

371
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
372
		mutex_lock(&callback_mutex);
373
		task_lock(tsk);
374
		cs = task_cs(tsk); /* Maybe changed when task not locked */
375 376
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
377 378 379 380 381 382 383 384
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
385
		task_unlock(tsk);
386
		mutex_unlock(&callback_mutex);
387
		mpol_rebind_task(tsk, &tsk->mems_allowed);
Linus Torvalds's avatar
Linus Torvalds committed
388 389 390 391 392 393 394 395
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
396
 * are only set if the other's are set.  Call holding cgroup_mutex.
Linus Torvalds's avatar
Linus Torvalds committed
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
414
 * cgroup_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
415 416 417 418 419 420 421 422 423 424 425 426 427 428
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
429
	struct cgroup *cont;
Linus Torvalds's avatar
Linus Torvalds committed
430 431 432
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
433 434
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
Linus Torvalds's avatar
Linus Torvalds committed
435 436 437 438
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
439
	if (cur == &top_cpuset)
Linus Torvalds's avatar
Linus Torvalds committed
440 441
		return 0;

442 443
	par = cur->parent;

Linus Torvalds's avatar
Linus Torvalds committed
444 445 446 447
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

448 449 450 451
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
452 453
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
Linus Torvalds's avatar
Linus Torvalds committed
454 455 456 457 458 459 460 461 462 463
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

464 465 466 467 468 469 470 471
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
		if (cpus_empty(trial->cpus_allowed) ||
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

Linus Torvalds's avatar
Linus Torvalds committed
472 473 474
	return 0;
}

Paul Jackson's avatar
Paul Jackson committed
475 476 477 478 479 480 481 482 483 484
/*
 * Helper routine for rebuild_sched_domains().
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */

static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
	return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
}

485 486 487 488 489 490 491 492
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
static void
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
{
	LIST_HEAD(q);

	list_add(&c->stack_list, &q);
	while (!list_empty(&q)) {
		struct cpuset *cp;
		struct cgroup *cont;
		struct cpuset *child;

		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

		if (cpus_empty(cp->cpus_allowed))
			continue;

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);

		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &q);
		}
	}
}

Paul Jackson's avatar
Paul Jackson committed
520 521 522
/*
 * rebuild_sched_domains()
 *
523 524 525 526 527 528 529 530 531 532
 * This routine will be called to rebuild the scheduler's dynamic
 * sched domains:
 * - if the flag 'sched_load_balance' of any cpuset with non-empty
 *   'cpus' changes,
 * - or if the 'cpus' allowed changes in any cpuset which has that
 *   flag enabled,
 * - or if the 'sched_relax_domain_level' of any cpuset which has
 *   that flag enabled and with non-empty 'cpus' changes,
 * - or if any cpuset with non-empty 'cpus' is removed,
 * - or if a cpu gets offlined.
Paul Jackson's avatar
Paul Jackson committed
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
 *
 * This routine builds a partial partition of the systems CPUs
 * (the set of non-overlappping cpumask_t's in the array 'part'
 * below), and passes that partial partition to the kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the
 * schedulers load balancing domains (sched domains) as specified
 * by that partial partition.  A 'partial partition' is a set of
 * non-overlapping subsets whose union is a subset of that set.
 *
 * See "What is sched_load_balance" in Documentation/cpusets.txt
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during
 * call due to the kfifo_alloc() and kmalloc() calls.  May nest
552
 * a call to the get_online_cpus()/put_online_cpus() pair.
Paul Jackson's avatar
Paul Jackson committed
553
 * Must not be called holding callback_mutex, because we must not
554 555
 * call get_online_cpus() while holding callback_mutex.  Elsewhere
 * the kernel nests callback_mutex inside get_online_cpus() calls.
Paul Jackson's avatar
Paul Jackson committed
556 557 558
 * So the reverse nesting would risk an ABBA deadlock.
 *
 * The three key local variables below are:
559
 *    q  - a linked-list queue of cpuset pointers, used to implement a
Paul Jackson's avatar
Paul Jackson committed
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */

592
void rebuild_sched_domains(void)
Paul Jackson's avatar
Paul Jackson committed
593
{
594
	LIST_HEAD(q);		/* queue of cpusets to be scanned*/
Paul Jackson's avatar
Paul Jackson committed
595 596 597 598 599
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
	cpumask_t *doms;	/* resulting partition; i.e. sched domains */
600
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
Paul Jackson's avatar
Paul Jackson committed
601 602 603 604 605
	int ndoms;		/* number of sched domains in result */
	int nslot;		/* next empty doms[] cpumask_t slot */

	csa = NULL;
	doms = NULL;
606
	dattr = NULL;
Paul Jackson's avatar
Paul Jackson committed
607 608 609 610 611 612 613

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
		ndoms = 1;
		doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
		if (!doms)
			goto rebuild;
614 615 616
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
617
			update_domain_attr_tree(dattr, &top_cpuset);
618
		}
Paul Jackson's avatar
Paul Jackson committed
619 620 621 622 623 624 625 626 627
		*doms = top_cpuset.cpus_allowed;
		goto rebuild;
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

628 629
	list_add(&top_cpuset.stack_list, &q);
	while (!list_empty(&q)) {
Paul Jackson's avatar
Paul Jackson committed
630 631
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
632

633 634 635
		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

636 637 638
		if (cpus_empty(cp->cpus_allowed))
			continue;

639 640 641 642 643 644 645
		/*
		 * All child cpusets contain a subset of the parent's cpus, so
		 * just skip them, and then we call update_domain_attr_tree()
		 * to calc relax_domain_level of the corresponding sched
		 * domain.
		 */
		if (is_sched_load_balance(cp)) {
Paul Jackson's avatar
Paul Jackson committed
646
			csa[csn++] = cp;
647 648
			continue;
		}
649

Paul Jackson's avatar
Paul Jackson committed
650 651
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
652
			list_add_tail(&child->stack_list, &q);
Paul Jackson's avatar
Paul Jackson committed
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

	/* Convert <csn, csa> to <ndoms, doms> */
	doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
	if (!doms)
		goto rebuild;
687
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
Paul Jackson's avatar
Paul Jackson committed
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		if (apn >= 0) {
			cpumask_t *dp = doms + nslot;

			if (nslot == ndoms) {
				static int warnings = 10;
				if (warnings) {
					printk(KERN_WARNING
					 "rebuild_sched_domains confused:"
					  " nslot %d, ndoms %d, csn %d, i %d,"
					  " apn %d\n",
					  nslot, ndoms, csn, i, apn);
					warnings--;
				}
				continue;
			}

			cpus_clear(*dp);
710 711
			if (dattr)
				*(dattr + nslot) = SD_ATTR_INIT;
Paul Jackson's avatar
Paul Jackson committed
712 713 714 715 716 717
			for (j = i; j < csn; j++) {
				struct cpuset *b = csa[j];

				if (apn == b->pn) {
					cpus_or(*dp, *dp, b->cpus_allowed);
					b->pn = -1;
718
					if (dattr)
719
						update_domain_attr_tree(dattr
720
								   + nslot, b);
Paul Jackson's avatar
Paul Jackson committed
721 722 723 724 725 726 727 728 729
				}
			}
			nslot++;
		}
	}
	BUG_ON(nslot != ndoms);

rebuild:
	/* Have scheduler rebuild sched domains */
730
	get_online_cpus();
731
	partition_sched_domains(ndoms, doms, dattr);
732
	put_online_cpus();
Paul Jackson's avatar
Paul Jackson committed
733 734 735 736

done:
	kfree(csa);
	/* Don't kfree(doms) -- partition_sched_domains() does that. */
737
	/* Don't kfree(dattr) -- partition_sched_domains() does that. */
Paul Jackson's avatar
Paul Jackson committed
738 739
}

740 741 742 743 744
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
745
 * Call with cgroup_mutex held.  May take callback_mutex during call.
746 747 748
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
749
 */
750 751
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
752 753 754 755
{
	return !cpus_equal(tsk->cpus_allowed,
			(cgroup_cs(scan->cg))->cpus_allowed);
}
756

757 758 759 760 761 762 763 764 765 766 767
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
768 769
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
770
{
771
	set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
772 773
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * Return 0 if successful, -errno if not.
 */
static int update_tasks_cpumask(struct cpuset *cs)
{
	struct cgroup_scanner scan;
	struct ptr_heap heap;
	int retval;

791 792 793 794 795 796
	/*
	 * cgroup_scan_tasks() will initialize heap->gt for us.
	 * heap_init() is still needed here for we should not change
	 * cs->cpus_allowed when heap_init() fails.
	 */
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
797 798 799 800 801 802 803 804 805 806 807 808 809
	if (retval)
		return retval;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
	scan.heap = &heap;
	retval = cgroup_scan_tasks(&scan);

	heap_free(&heap);
	return retval;
}

810 811 812 813 814
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
815
static int update_cpumask(struct cpuset *cs, const char *buf)
Linus Torvalds's avatar
Linus Torvalds committed
816 817
{
	struct cpuset trialcs;
818 819
	int retval;
	int is_load_balanced;
Linus Torvalds's avatar
Linus Torvalds committed
820

821 822 823 824
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

Linus Torvalds's avatar
Linus Torvalds committed
825
	trialcs = *cs;
826 827

	/*
828
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
829 830 831
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
832
	 */
833
	if (!*buf) {
834 835 836 837 838
		cpus_clear(trialcs.cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs.cpus_allowed);
		if (retval < 0)
			return retval;
839 840 841

		if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
			return -EINVAL;
842
	}
Linus Torvalds's avatar
Linus Torvalds committed
843
	retval = validate_change(cs, &trialcs);
844 845
	if (retval < 0)
		return retval;
Paul Jackson's avatar
Paul Jackson committed
846

Paul Menage's avatar
Paul Menage committed
847 848 849
	/* Nothing to do if the cpus didn't change */
	if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
		return 0;
850

Paul Jackson's avatar
Paul Jackson committed
851 852
	is_load_balanced = is_sched_load_balance(&trialcs);

853
	mutex_lock(&callback_mutex);
854
	cs->cpus_allowed = trialcs.cpus_allowed;
855
	mutex_unlock(&callback_mutex);
Paul Jackson's avatar
Paul Jackson committed
856

Paul Menage's avatar
Paul Menage committed
857 858
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
859
	 * that need an update.
Paul Menage's avatar
Paul Menage committed
860
	 */
861 862 863
	retval = update_tasks_cpumask(cs);
	if (retval < 0)
		return retval;
864

Paul Menage's avatar
Paul Menage committed
865
	if (is_load_balanced)
Paul Jackson's avatar
Paul Jackson committed
866
		rebuild_sched_domains();
867
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
868 869
}

870 871 872 873 874 875 876 877
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
878
 *    Call holding cgroup_mutex, so current's cpuset won't change
879
 *    during this call, as manage_mutex holds off any cpuset_attach()
880 881
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
882
 *    our task's cpuset.
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
915
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
916 917 918
	mutex_unlock(&callback_mutex);
}

919 920
static void *cpuset_being_rebound;

921 922 923 924 925 926 927 928 929
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
 *
 * Called with cgroup_mutex held
 * Return 0 if successful, -errno if not.
 */
static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
Linus Torvalds's avatar
Linus Torvalds committed
930
{
931
	struct task_struct *p;
932 933
	struct mm_struct **mmarray;
	int i, n, ntasks;
934
	int migrate;
935
	int fudge;
936
	struct cgroup_iter it;
937
	int retval;
938

939
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
940 941 942 943 944 945 946 947 948 949 950 951 952

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
953
		ntasks = cgroup_task_count(cs->css.cgroup);  /* guess */
954 955 956 957
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
958
		read_lock(&tasklist_lock);		/* block fork */
959
		if (cgroup_task_count(cs->css.cgroup) <= ntasks)
960
			break;				/* got enough */
961
		read_unlock(&tasklist_lock);		/* try again */
962 963 964 965 966 967
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
968 969
	cgroup_iter_start(cs->css.cgroup, &it);
	while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
970 971 972 973 974
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
975
			break;
976 977 978 979 980
		}
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
981 982
	}
	cgroup_iter_end(cs->css.cgroup, &it);
983
	read_unlock(&tasklist_lock);
984 985 986 987 988 989

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
990
	 * tasklist_lock.  Forks can happen again now - the mpol_dup()
991 992
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
993
	 * cgroup_mutex, we know that no other rebind effort will
994 995
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
996
	 * is idempotent.  Also migrate pages in each mm to new nodes.
997
	 */
998
	migrate = is_memory_migrate(cs);
999 1000 1001 1002
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
1003
		if (migrate)
1004
			cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1005 1006 1007
		mmput(mm);
	}

1008
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1009
	kfree(mmarray);
1010
	cpuset_being_rebound = NULL;
1011
	retval = 0;
1012
done:
Linus Torvalds's avatar
Linus Torvalds committed
1013 1014 1015
	return retval;
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
static int update_nodemask(struct cpuset *cs, const char *buf)
{
	struct cpuset trialcs;
	nodemask_t oldmem;
	int retval;

	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
	if (cs == &top_cpuset)
		return -EACCES;

	trialcs = *cs;

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
		nodes_clear(trialcs.mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs.mems_allowed);
		if (retval < 0)
			goto done;

		if (!nodes_subset(trialcs.mems_allowed,
				node_states[N_HIGH_MEMORY]))
			return -EINVAL;
	}
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
	cs->mems_allowed = trialcs.mems_allowed;
	cs->mems_generation = cpuset_mems_generation++;
	mutex_unlock(&callback_mutex);

	retval = update_tasks_nodemask(cs, &oldmem);
done:
	return retval;
}

1080 1081 1082 1083 1084
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1085
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1086
{
1087 1088
	if (val < -1 || val >= SD_LV_MAX)
		return -EINVAL;
1089 1090 1091

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1092 1093
		if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
			rebuild_sched_domains();
1094 1095 1096 1097 1098
	}

	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
1099 1100
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1101 1102 1103
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1104
 *
1105
 * Call with cgroup_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
1106 1107
 */

1108 1109
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
Linus Torvalds's avatar
Linus Torvalds committed
1110 1111
{
	struct cpuset trialcs;
1112
	int err;
Paul Jackson's avatar
Paul Jackson committed
1113
	int cpus_nonempty, balance_flag_changed;
Linus Torvalds's avatar
Linus Torvalds committed
1114 1115 1116 1117 1118 1119 1120 1121

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1122 1123
	if (err < 0)
		return err;
Paul Jackson's avatar
Paul Jackson committed
1124 1125 1126 1127 1128

	cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
	balance_flag_changed = (is_sched_load_balance(cs) !=
		 			is_sched_load_balance(&trialcs));

1129
	mutex_lock(&callback_mutex);
1130
	cs->flags = trialcs.flags;
1131
	mutex_unlock(&callback_mutex);
1132

Paul Jackson's avatar
Paul Jackson committed
1133 1134 1135
	if (cpus_nonempty && balance_flag_changed)
		rebuild_sched_domains();

1136
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
1137 1138
}

1139
/*
1140
 * Frequency meter - How fast is some event occurring?
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1237
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1238 1239
static int cpuset_can_attach(struct cgroup_subsys *ss,
			     struct cgroup *cont, struct task_struct *tsk)
Linus Torvalds's avatar
Linus Torvalds committed
1240
{
1241
	struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds's avatar
Linus Torvalds committed
1242 1243 1244

	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;
1245 1246 1247 1248 1249 1250 1251 1252 1253
	if (tsk->flags & PF_THREAD_BOUND) {
		cpumask_t mask;

		mutex_lock(&callback_mutex);
		mask = cs->cpus_allowed;
		mutex_unlock(&callback_mutex);
		if (!cpus_equal(tsk->cpus_allowed, mask))
			return -EINVAL;
	}
Linus Torvalds's avatar
Linus Torvalds committed
1254

1255 1256
	return security_task_setscheduler(tsk, 0, NULL);
}
Linus Torvalds's avatar
Linus Torvalds committed
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266
static void cpuset_attach(struct cgroup_subsys *ss,
			  struct cgroup *cont, struct cgroup *oldcont,
			  struct task_struct *tsk)
{
	cpumask_t cpus;
	nodemask_t from, to;
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);
1267
	int err;
1268

1269
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1270
	guarantee_online_cpus(cs, &cpus);
1271
	err = set_cpus_allowed_ptr(tsk, &cpus);
1272
	mutex_unlock(&callback_mutex);
1273 1274
	if (err)
		return;
Linus Torvalds's avatar
Linus Torvalds committed
1275

1276 1277
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;
1278 1279 1280
	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1281
		if (is_memory_migrate(cs))
1282
			cpuset_migrate_mm(mm, &from, &to);
1283 1284 1285
		mmput(mm);
	}

Linus Torvalds's avatar
Linus Torvalds committed
1286 1287 1288 1289 1290
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1291
	FILE_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
1292 1293 1294 1295
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1296
	FILE_MEM_HARDWALL,
Paul Jackson's avatar
Paul Jackson committed
1297
	FILE_SCHED_LOAD_BALANCE,
1298
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1299 1300
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1301 1302
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
1303 1304
} cpuset_filetype_t;