cpuset.c 52.9 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *  Portions Copyright (c) 2004 Silicon Graphics, Inc.
 *
 *  2003-10-10 Written by Simon Derr <simon.derr@bull.net>
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson <pj@sgi.com>
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/config.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
35
#include <linux/mempolicy.h>
Linus Torvalds's avatar
Linus Torvalds committed
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
#include <asm/semaphore.h>

#define CPUSET_SUPER_MAGIC 		0x27e0eb

struct cpuset {
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

64 65 66
	/*
	 * Count is atomic so can incr (fork) or decr (exit) without a lock.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	atomic_t count;			/* count tasks using this cpuset */

	/*
	 * We link our 'sibling' struct into our parents 'children'.
	 * Our children link their 'sibling' into our 'children'.
	 */
	struct list_head sibling;	/* my parents children */
	struct list_head children;	/* my children */

	struct cpuset *parent;		/* my parent */
	struct dentry *dentry;		/* cpuset fs entry */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
	 int mems_generation;
};

/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
	CS_REMOVED,
	CS_NOTIFY_ON_RELEASE
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
	return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
	return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
}

static inline int is_removed(const struct cpuset *cs)
{
	return !!test_bit(CS_REMOVED, &cs->flags);
}

static inline int notify_on_release(const struct cpuset *cs)
{
	return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
}

/*
 * Increment this atomic integer everytime any cpuset changes its
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
 * A single, global generation is needed because attach_task() could
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
 * modify anothers memory placement.  So we must enable every task,
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
 */
static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
	.count = ATOMIC_INIT(0),
	.sibling = LIST_HEAD_INIT(top_cpuset.sibling),
	.children = LIST_HEAD_INIT(top_cpuset.children),
	.parent = NULL,
	.dentry = NULL,
	.mems_generation = 0,
};

static struct vfsmount *cpuset_mount;
static struct super_block *cpuset_sb = NULL;

/*
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
 * We have two global cpuset semaphores below.  They can nest.
 * It is ok to first take manage_sem, then nest callback_sem.  We also
 * require taking task_lock() when dereferencing a tasks cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both semaphores to modify cpusets.  If a task
 * holds manage_sem, then it blocks others wanting that semaphore,
 * ensuring that it is the only task able to also acquire callback_sem
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
 * also allocate memory while just holding manage_sem.  While it is
 * performing these checks, various callback routines can briefly
 * acquire callback_sem to query cpusets.  Once it is ready to make
 * the changes, it takes callback_sem, blocking everyone else.
 *
 * Calls to the kernel memory allocator can not be made while holding
 * callback_sem, as that would risk double tripping on callback_sem
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
 * If a task is only holding callback_sem, then it has read-only
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding manage_sem or callback_sem can't rely
 * on the count field not changing.  However, if the count goes to
 * zero, then only attach_task(), which holds both semaphores, can
 * increment it again.  Because a count of zero means that no tasks
 * are currently attached, therefore there is no way a task attached
 * to that cpuset can fork (the other way to increment the count).
 * So code holding manage_sem or callback_sem can safely assume that
 * if the count is zero, it will stay zero.  Similarly, if a task
 * holds manage_sem or callback_sem on a cpuset with zero count, it
 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
 * both of those semaphores.
 *
 * A possible optimization to improve parallelism would be to make
 * callback_sem a R/W semaphore (rwsem), allowing the callback routines
 * to proceed in parallel, with read access, until the holder of
 * manage_sem needed to take this rwsem for exclusive write access
 * and modify some cpusets.
 *
 * The cpuset_common_file_write handler for operations that modify
 * the cpuset hierarchy holds manage_sem across the entire operation,
 * single threading all such cpuset modifications across the system.
 *
 * The cpuset_common_file_read() handlers only hold callback_sem across
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
 * (usually) take either semaphore.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cpuset_exit(),
 * when a task in a notify_on_release cpuset exits.  Then manage_sem
206
 * is taken, and if the cpuset count is zero, a usermode call made
Linus Torvalds's avatar
Linus Torvalds committed
207 208 209
 * to /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
 * A cpuset can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cpusets is empty.  Since all
 * tasks in the system use _some_ cpuset, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cpuset
 * always has either children cpusets and/or using tasks.  So we don't
 * need a special hack to ensure that top_cpuset cannot be deleted.
 *
 * The above "Tale of Two Semaphores" would be complete, but for:
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of attach_task(),
 * which overwrites one tasks cpuset pointer with another.  It does
 * so using both semaphores, however there are several performance
 * critical places that need to reference task->cpuset without the
 * expense of grabbing a system global semaphore.  Therefore except as
 * noted below, when dereferencing or, as in attach_task(), modifying
 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
 * (task->alloc_lock) already in the task_struct routinely used for
 * such matters.
Linus Torvalds's avatar
Linus Torvalds committed
230 231
 */

232 233
static DECLARE_MUTEX(manage_sem);
static DECLARE_MUTEX(callback_sem);
234

Linus Torvalds's avatar
Linus Torvalds committed
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/*
 * A couple of forward declarations required, due to cyclic reference loop:
 *  cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
 *  -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
 */

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);

static struct backing_dev_info cpuset_backing_dev_info = {
	.ra_pages = 0,		/* No readahead */
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};

static struct inode *cpuset_new_inode(mode_t mode)
{
	struct inode *inode = new_inode(cpuset_sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blksize = PAGE_CACHE_SIZE;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
	}
	return inode;
}

static void cpuset_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cpuset */
	if (S_ISDIR(inode->i_mode)) {
		struct cpuset *cs = dentry->d_fsdata;
		BUG_ON(!(is_removed(cs)));
		kfree(cs);
	}
	iput(inode);
}

static struct dentry_operations cpuset_dops = {
	.d_iput = cpuset_diput,
};

static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
{
282
	struct dentry *d = lookup_one_len(name, parent, strlen(name));
Linus Torvalds's avatar
Linus Torvalds committed
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	if (!IS_ERR(d))
		d->d_op = &cpuset_dops;
	return d;
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cpuset_d_remove_dir(struct dentry *dentry)
{
	struct list_head *node;

	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_child);
		list_del_init(node);
		if (d->d_inode) {
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	list_del_init(&dentry->d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static struct super_operations cpuset_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
};

static int cpuset_fill_super(struct super_block *sb, void *unused_data,
							int unused_silent)
{
	struct inode *inode;
	struct dentry *root;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CPUSET_SUPER_MAGIC;
	sb->s_op = &cpuset_ops;
	cpuset_sb = sb;

	inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
	if (inode) {
		inode->i_op = &simple_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;
		/* directories start off with i_nlink == 2 (for "." entry) */
		inode->i_nlink++;
	} else {
		return -ENOMEM;
	}

	root = d_alloc_root(inode);
	if (!root) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = root;
	return 0;
}

static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
					int flags, const char *unused_dev_name,
					void *data)
{
	return get_sb_single(fs_type, flags, data, cpuset_fill_super);
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
	.kill_sb = kill_litter_super,
};

/* struct cftype:
 *
 * The files in the cpuset filesystem mostly have a very simple read/write
 * handling, some common function will take care of it. Nevertheless some cases
 * (read tasks) are special and therefore I define this structure for every
 * kind of file.
 *
 *
 * When reading/writing to a file:
 *	- the cpuset to use in file->f_dentry->d_parent->d_fsdata
 *	- the 'cftype' of the file is file->f_dentry->d_fsdata
 */

struct cftype {
	char *name;
	int private;
	int (*open) (struct inode *inode, struct file *file);
	ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*write) (struct file *file, const char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*release) (struct inode *inode, struct file *file);
};

static inline struct cpuset *__d_cs(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

/*
408
 * Call with manage_sem held.  Writes path of cpuset into buf.
Linus Torvalds's avatar
Linus Torvalds committed
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
 * Returns 0 on success, -errno on error.
 */

static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
{
	char *start;

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
		int len = cs->dentry->d_name.len;
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
		memcpy(start, cs->dentry->d_name.name, len);
		cs = cs->parent;
		if (!cs)
			break;
		if (!cs->parent)
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

/*
 * Notify userspace when a cpuset is released, by running
 * /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cpuset.
 *
 * This races with the possibility that some other task will be
 * attached to this cpuset before it is removed, or that some other
 * user task will 'mkdir' a child cpuset of this cpuset.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
 * unused, and this cpuset will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
452 453 454 455 456 457 458 459
 * The final arg to call_usermodehelper() is 0, which means don't
 * wait.  The separate /sbin/cpuset_release_agent task is forked by
 * call_usermodehelper(), then control in this thread returns here,
 * without waiting for the release agent task.  We don't bother to
 * wait because the caller of this routine has no use for the exit
 * status of the /sbin/cpuset_release_agent task, so no sense holding
 * our caller up for that.
 *
460 461 462 463 464
 * When we had only one cpuset semaphore, we had to call this
 * without holding it, to avoid deadlock when call_usermodehelper()
 * allocated memory.  With two locks, we could now call this while
 * holding manage_sem, but we still don't, so as to minimize
 * the time manage_sem is held.
Linus Torvalds's avatar
Linus Torvalds committed
465 466
 */

467
static void cpuset_release_agent(const char *pathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
468 469 470 471
{
	char *argv[3], *envp[3];
	int i;

472 473 474
	if (!pathbuf)
		return;

Linus Torvalds's avatar
Linus Torvalds committed
475 476
	i = 0;
	argv[i++] = "/sbin/cpuset_release_agent";
477
	argv[i++] = (char *)pathbuf;
Linus Torvalds's avatar
Linus Torvalds committed
478 479 480 481 482 483 484 485
	argv[i] = NULL;

	i = 0;
	/* minimal command environment */
	envp[i++] = "HOME=/";
	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
	envp[i] = NULL;

486 487
	call_usermodehelper(argv[0], argv, envp, 0);
	kfree(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
488 489 490 491 492 493
}

/*
 * Either cs->count of using tasks transitioned to zero, or the
 * cs->children list of child cpusets just became empty.  If this
 * cs is notify_on_release() and now both the user count is zero and
494 495
 * the list of children is empty, prepare cpuset path in a kmalloc'd
 * buffer, to be returned via ppathbuf, so that the caller can invoke
496 497
 * cpuset_release_agent() with it later on, once manage_sem is dropped.
 * Call here with manage_sem held.
498 499 500 501 502
 *
 * This check_for_release() routine is responsible for kmalloc'ing
 * pathbuf.  The above cpuset_release_agent() is responsible for
 * kfree'ing pathbuf.  The caller of these routines is responsible
 * for providing a pathbuf pointer, initialized to NULL, then
503 504
 * calling check_for_release() with manage_sem held and the address
 * of the pathbuf pointer, then dropping manage_sem, then calling
505
 * cpuset_release_agent() with pathbuf, as set by check_for_release().
Linus Torvalds's avatar
Linus Torvalds committed
506 507
 */

508
static void check_for_release(struct cpuset *cs, char **ppathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
509 510 511 512 513 514 515 516 517
{
	if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
	    list_empty(&cs->children)) {
		char *buf;

		buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!buf)
			return;
		if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
518 519 520
			kfree(buf);
		else
			*ppathbuf = buf;
Linus Torvalds's avatar
Linus Torvalds committed
521 522 523 524 525 526 527 528 529 530 531 532 533 534
	}
}

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
535
 * Call with callback_sem held.
Linus Torvalds's avatar
Linus Torvalds committed
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online mems.  If we get
 * all the way to the top and still haven't found any online mems,
 * return node_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of node_online_map.
 *
559
 * Call with callback_sem held.
Linus Torvalds's avatar
Linus Torvalds committed
560 561 562 563 564 565 566 567 568 569 570 571 572 573
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
	while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
		cs = cs->parent;
	if (cs)
		nodes_and(*pmask, cs->mems_allowed, node_online_map);
	else
		*pmask = node_online_map;
	BUG_ON(!nodes_intersects(*pmask, node_online_map));
}

/*
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
 * Refresh current tasks mems_allowed and mems_generation from current
 * tasks cpuset.
 *
 * Call without callback_sem or task_lock() held.  May be called with
 * or without manage_sem held.  Will acquire task_lock() and might
 * acquire callback_sem during call.
 *
 * The task_lock() is required to dereference current->cpuset safely.
 * Without it, we could pick up the pointer value of current->cpuset
 * in one instruction, and then attach_task could give us a different
 * cpuset, and then the cpuset we had could be removed and freed,
 * and then on our next instruction, we could dereference a no longer
 * valid cpuset pointer to get its mems_generation field.
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
Linus Torvalds's avatar
Linus Torvalds committed
592 593 594 595
 */

static void refresh_mems(void)
{
596 597 598 599 600
	int my_cpusets_mem_gen;

	task_lock(current);
	my_cpusets_mem_gen = current->cpuset->mems_generation;
	task_unlock(current);
Linus Torvalds's avatar
Linus Torvalds committed
601

602 603
	if (current->cpuset_mems_generation != my_cpusets_mem_gen) {
		struct cpuset *cs;
604
		nodemask_t oldmem = current->mems_allowed;
605 606 607 608

		down(&callback_sem);
		task_lock(current);
		cs = current->cpuset;
Linus Torvalds's avatar
Linus Torvalds committed
609 610
		guarantee_online_mems(cs, &current->mems_allowed);
		current->cpuset_mems_generation = cs->mems_generation;
611 612
		task_unlock(current);
		up(&callback_sem);
613 614
		if (!nodes_equal(oldmem, current->mems_allowed))
			numa_policy_rebind(&oldmem, &current->mems_allowed);
Linus Torvalds's avatar
Linus Torvalds committed
615 616 617 618 619 620 621 622
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
623
 * are only set if the other's are set.  Call holding manage_sem.
Linus Torvalds's avatar
Linus Torvalds committed
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
641
 * manage_sem held.
Linus Torvalds's avatar
Linus Torvalds committed
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
	list_for_each_entry(c, &cur->children, sibling) {
		if (!is_cpuset_subset(c, trial))
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
	if ((par = cur->parent) == NULL)
		return 0;

	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

	/* If either I or some sibling (!= me) is exclusive, we can't overlap */
	list_for_each_entry(c, &par->children, sibling) {
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

	return 0;
}

687 688 689 690 691 692 693 694
/*
 * For a given cpuset cur, partition the system as follows
 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * Build these two partitions by calling partition_sched_domains
 *
695
 * Call with manage_sem held.  May nest a call to the
696 697
 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
 */
698

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
static void update_cpu_domains(struct cpuset *cur)
{
	struct cpuset *c, *par = cur->parent;
	cpumask_t pspan, cspan;

	if (par == NULL || cpus_empty(cur->cpus_allowed))
		return;

	/*
	 * Get all cpus from parent's cpus_allowed not part of exclusive
	 * children
	 */
	pspan = par->cpus_allowed;
	list_for_each_entry(c, &par->children, sibling) {
		if (is_cpu_exclusive(c))
			cpus_andnot(pspan, pspan, c->cpus_allowed);
	}
	if (is_removed(cur) || !is_cpu_exclusive(cur)) {
		cpus_or(pspan, pspan, cur->cpus_allowed);
		if (cpus_equal(pspan, cur->cpus_allowed))
			return;
		cspan = CPU_MASK_NONE;
	} else {
		if (cpus_empty(pspan))
			return;
		cspan = cur->cpus_allowed;
		/*
		 * Get all cpus from current cpuset's cpus_allowed not part
		 * of exclusive children
		 */
		list_for_each_entry(c, &cur->children, sibling) {
			if (is_cpu_exclusive(c))
				cpus_andnot(cspan, cspan, c->cpus_allowed);
		}
	}

	lock_cpu_hotplug();
	partition_sched_domains(&pspan, &cspan);
	unlock_cpu_hotplug();
}

740 741 742 743
/*
 * Call with manage_sem held.  May take callback_sem during call.
 */

Linus Torvalds's avatar
Linus Torvalds committed
744 745 746
static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
747
	int retval, cpus_unchanged;
Linus Torvalds's avatar
Linus Torvalds committed
748 749 750 751 752 753 754 755 756

	trialcs = *cs;
	retval = cpulist_parse(buf, trialcs.cpus_allowed);
	if (retval < 0)
		return retval;
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
	if (cpus_empty(trialcs.cpus_allowed))
		return -ENOSPC;
	retval = validate_change(cs, &trialcs);
757 758 759
	if (retval < 0)
		return retval;
	cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
760
	down(&callback_sem);
761
	cs->cpus_allowed = trialcs.cpus_allowed;
762
	up(&callback_sem);
763 764 765
	if (is_cpu_exclusive(cs) && !cpus_unchanged)
		update_cpu_domains(cs);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
766 767
}

768 769 770 771
/*
 * Call with manage_sem held.  May take callback_sem during call.
 */

Linus Torvalds's avatar
Linus Torvalds committed
772 773 774 775 776 777 778 779 780 781 782 783 784 785
static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
	int retval;

	trialcs = *cs;
	retval = nodelist_parse(buf, trialcs.mems_allowed);
	if (retval < 0)
		return retval;
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
	if (nodes_empty(trialcs.mems_allowed))
		return -ENOSPC;
	retval = validate_change(cs, &trialcs);
	if (retval == 0) {
786
		down(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
787 788 789
		cs->mems_allowed = trialcs.mems_allowed;
		atomic_inc(&cpuset_mems_generation);
		cs->mems_generation = atomic_read(&cpuset_mems_generation);
790
		up(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
791 792 793 794 795 796 797 798 799 800
	}
	return retval;
}

/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
 *						CS_NOTIFY_ON_RELEASE)
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
801 802
 *
 * Call with manage_sem held.
Linus Torvalds's avatar
Linus Torvalds committed
803 804 805 806 807 808
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
809
	int err, cpu_exclusive_changed;
Linus Torvalds's avatar
Linus Torvalds committed
810 811 812 813 814 815 816 817 818 819

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
820 821 822 823
	if (err < 0)
		return err;
	cpu_exclusive_changed =
		(is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
824
	down(&callback_sem);
825 826 827 828
	if (turning_on)
		set_bit(bit, &cs->flags);
	else
		clear_bit(bit, &cs->flags);
829
	up(&callback_sem);
830 831 832 833

	if (cpu_exclusive_changed)
                update_cpu_domains(cs);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
834 835
}

836 837 838 839 840 841 842 843 844
/*
 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
 * notified on release.
 *
 * Call holding manage_sem.  May take callback_sem and task_lock of
 * the task 'pid' during call.
 */

845
static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
846 847 848 849 850 851
{
	pid_t pid;
	struct task_struct *tsk;
	struct cpuset *oldcs;
	cpumask_t cpus;

852
	if (sscanf(pidbuf, "%d", &pid) != 1)
Linus Torvalds's avatar
Linus Torvalds committed
853 854 855 856 857 858 859 860
		return -EIO;
	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

	if (pid) {
		read_lock(&tasklist_lock);

		tsk = find_task_by_pid(pid);
861
		if (!tsk || tsk->flags & PF_EXITING) {
Linus Torvalds's avatar
Linus Torvalds committed
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
			read_unlock(&tasklist_lock);
			return -ESRCH;
		}

		get_task_struct(tsk);
		read_unlock(&tasklist_lock);

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

879 880
	down(&callback_sem);

Linus Torvalds's avatar
Linus Torvalds committed
881 882 883 884
	task_lock(tsk);
	oldcs = tsk->cpuset;
	if (!oldcs) {
		task_unlock(tsk);
885
		up(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
886 887 888 889 890 891 892 893 894 895
		put_task_struct(tsk);
		return -ESRCH;
	}
	atomic_inc(&cs->count);
	tsk->cpuset = cs;
	task_unlock(tsk);

	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);

896
	up(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
897 898
	put_task_struct(tsk);
	if (atomic_dec_and_test(&oldcs->count))
899
		check_for_release(oldcs, ppathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	return 0;
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
	FILE_ROOT,
	FILE_DIR,
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
	FILE_NOTIFY_ON_RELEASE,
	FILE_TASKLIST,
} cpuset_filetype_t;

static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
					size_t nbytes, loff_t *unused_ppos)
{
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	struct cftype *cft = __d_cft(file->f_dentry);
	cpuset_filetype_t type = cft->private;
	char *buffer;
923
	char *pathbuf = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
	if (nbytes > 100 + 6 * NR_CPUS)
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

940
	down(&manage_sem);
Linus Torvalds's avatar
Linus Torvalds committed
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

	if (is_removed(cs)) {
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
	case FILE_NOTIFY_ON_RELEASE:
		retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
		break;
	case FILE_TASKLIST:
964
		retval = attach_task(cs, buffer, &pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
965 966 967 968 969 970 971 972 973
		break;
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
974
	up(&manage_sem);
975
	cpuset_release_agent(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
out1:
	kfree(buffer);
	return retval;
}

static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	ssize_t retval = 0;
	struct cftype *cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->write)
		retval = cft->write(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_write(file, buf, nbytes, ppos);

	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1014
	down(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1015
	mask = cs->cpus_allowed;
1016
	up(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1017 1018 1019 1020 1021 1022 1023 1024

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1025
	down(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1026
	mask = cs->mems_allowed;
1027
	up(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
				size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
	case FILE_NOTIFY_ON_RELEASE:
		*s++ = notify_on_release(cs) ? '1' : '0';
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

Al Viro's avatar
Al Viro committed
1069
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
Linus Torvalds's avatar
Linus Torvalds committed
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
out:
	free_page((unsigned long)page);
	return retval;
}

static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
								loff_t *ppos)
{
	ssize_t retval = 0;
	struct cftype *cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->read)
		retval = cft->read(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_read(file, buf, nbytes, ppos);

	return retval;
}

static int cpuset_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
	if (cft->open)
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cpuset_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

Paul Jackson's avatar
Paul Jackson committed
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/*
 * cpuset_rename - Only allow simple rename of directories in place.
 */
static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
                  struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

Linus Torvalds's avatar
Linus Torvalds committed
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static struct file_operations cpuset_file_operations = {
	.read = cpuset_file_read,
	.write = cpuset_file_write,
	.llseek = generic_file_llseek,
	.open = cpuset_file_open,
	.release = cpuset_file_release,
};

static struct inode_operations cpuset_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cpuset_mkdir,
	.rmdir = cpuset_rmdir,
Paul Jackson's avatar
Paul Jackson committed
1147
	.rename = cpuset_rename,
Linus Torvalds's avatar
Linus Torvalds committed
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
};

static int cpuset_create_file(struct dentry *dentry, int mode)
{
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cpuset_new_inode(mode);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cpuset_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inode->i_nlink++;
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cpuset_file_operations;
	}

	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
 *	cpuset_create_dir - create a directory for an object.
 *	cs: 	the cpuset we create the directory for.
 *		It must have a valid ->parent field
 *		And we are going to fill its ->dentry field.
 *	name:	The name to give to the cpuset directory. Will be copied.
 *	mode:	mode to set on new directory.
 */

static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
{
	struct dentry *dentry = NULL;
	struct dentry *parent;
	int error = 0;

	parent = cs->parent->dentry;
	dentry = cpuset_get_dentry(parent, name);
	if (IS_ERR(dentry))
		return PTR_ERR(dentry);
	error = cpuset_create_file(dentry, S_IFDIR | mode);
	if (!error) {
		dentry->d_fsdata = cs;
		parent->d_inode->i_nlink++;
		cs->dentry = dentry;
	}
	dput(dentry);

	return error;
}

static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
{
	struct dentry *dentry;
	int error;

	down(&dir->d_inode->i_sem);
	dentry = cpuset_get_dentry(dir, cft->name);
	if (!IS_ERR(dentry)) {
		error = cpuset_create_file(dentry, 0644 | S_IFREG);
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	up(&dir->d_inode->i_sem);
	return error;
}

/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cpuset has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */

/* cpusets_tasks_read array */

struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1251 1252 1253
 * Return actual number of pids loaded.  No need to task_lock(p)
 * when reading out p->cpuset, as we don't really care if it changes
 * on the next cycle, and we are not going to try to dereference it.
Linus Torvalds's avatar
Linus Torvalds committed
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
 */
static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
{
	int n = 0;
	struct task_struct *g, *p;

	read_lock(&tasklist_lock);

	do_each_thread(g, p) {
		if (p->cpuset == cs) {
			pidarray[n++] = p->pid;
			if (unlikely(n == npids))
				goto array_full;
		}
	} while_each_thread(g, p);

array_full:
	read_unlock(&tasklist_lock);
	return n;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

1295 1296 1297 1298 1299 1300
/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cpuset being opened.
 *
 * Does not require any specific cpuset semaphores, and does not take any.
 */
Linus Torvalds's avatar
Linus Torvalds committed
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
static int cpuset_tasks_open(struct inode *unused, struct file *file)
{
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cpuset gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cpuset users didn't
	 * show up until sometime later on.
	 */
	npids = atomic_read(&cs->count);
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		goto err1;

	npids = pid_array_load(pidarray, npids, cs);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

	/* Call pid_array_to_buf() twice, first just to get bufsz */
	ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
	ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
	if (!ctr->buf)
		goto err2;
	ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

	kfree(pidarray);
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

	if (*ppos + nbytes > ctr->bufsz)
		nbytes = ctr->bufsz - *ppos;
	if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
		return -EFAULT;
	*ppos += nbytes;
	return nbytes;
}

static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

/*
 * for the common functions, 'private' gives the type of file
 */

static struct cftype cft_tasks = {
	.name = "tasks",
	.open = cpuset_tasks_open,
	.read = cpuset_tasks_read,
	.release = cpuset_tasks_release,
	.private = FILE_TASKLIST,
};

static struct cftype cft_cpus = {
	.name = "cpus",
	.private = FILE_CPULIST,
};

static struct cftype cft_mems = {
	.name = "mems",
	.private = FILE_MEMLIST,
};

static struct cftype cft_cpu_exclusive = {
	.name = "cpu_exclusive",
	.private = FILE_CPU_EXCLUSIVE,
};

static struct cftype cft_mem_exclusive = {
	.name = "mem_exclusive",
	.private = FILE_MEM_EXCLUSIVE,
};

static struct cftype cft_notify_on_release = {
	.name = "notify_on_release",
	.private = FILE_NOTIFY_ON_RELEASE,
};

static int cpuset_populate_dir(struct dentry *cs_dentry)
{
	int err;

	if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
		return err;
	return 0;
}

/*
 *	cpuset_create - create a cpuset
 *	parent:	cpuset that will be parent of the new cpuset.
 *	name:		name of the new cpuset. Will be strcpy'ed.
 *	mode:		mode to set on new inode
 *
 *	Must be called with the semaphore on the parent inode held
 */

static long cpuset_create(struct cpuset *parent, const char *name, int mode)
{
	struct cpuset *cs;
	int err;

	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
		return -ENOMEM;

1448
	down(&manage_sem);
1449
	refresh_mems();
Linus Torvalds's avatar
Linus Torvalds committed
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	cs->flags = 0;
	if (notify_on_release(parent))
		set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
	cs->cpus_allowed = CPU_MASK_NONE;
	cs->mems_allowed = NODE_MASK_NONE;
	atomic_set(&cs->count, 0);
	INIT_LIST_HEAD(&cs->sibling);
	INIT_LIST_HEAD(&cs->children);
	atomic_inc(&cpuset_mems_generation);
	cs->mems_generation = atomic_read(&cpuset_mems_generation);

	cs->parent = parent;

1463
	down(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1464
	list_add(&cs->sibling, &cs->parent->children);
1465
	up(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1466 1467 1468 1469 1470 1471

	err = cpuset_create_dir(cs, name, mode);
	if (err < 0)
		goto err;

	/*
1472
	 * Release manage_sem before cpuset_populate_dir() because it
Linus Torvalds's avatar
Linus Torvalds committed
1473 1474 1475
	 * will down() this new directory's i_sem and if we race with
	 * another mkdir, we might deadlock.
	 */
1476
	up(&manage_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1477 1478 1479 1480 1481 1482

	err = cpuset_populate_dir(cs->dentry);
	/* If err < 0, we have a half-filled directory - oh well ;) */
	return 0;
err:
	list_del(&cs->sibling);
1483
	up(&manage_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	kfree(cs);
	return err;
}

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cpuset *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_sem already */
	return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
}

static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
	struct cpuset *cs = dentry->d_fsdata;
	struct dentry *d;
	struct cpuset *parent;
1501
	char *pathbuf = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1502 1503 1504

	/* the vfs holds both inode->i_sem already */

1505
	down(&manage_sem);
1506
	refresh_mems();
Linus Torvalds's avatar
Linus Torvalds committed
1507
	if (atomic_read(&cs->count) > 0) {
1508
		up(&manage_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1509 1510 1511
		return -EBUSY;
	}
	if (!list_empty(&cs->children)) {
1512
		up(&manage_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1513 1514 1515
		return -EBUSY;
	}
	parent = cs->parent;
1516
	down(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1517
	set_bit(CS_REMOVED, &cs->flags);
1518 1519
	if (is_cpu_exclusive(cs))
		update_cpu_domains(cs);
Linus Torvalds's avatar
Linus Torvalds committed
1520
	list_del(&cs->sibling);	/* delete my sibling from parent->children */
1521
	spin_lock(&cs->dentry->d_lock);
Linus Torvalds's avatar
Linus Torvalds committed
1522 1523 1524 1525 1526
	d = dget(cs->dentry);
	cs->dentry = NULL;
	spin_unlock(&d->d_lock);
	cpuset_d_remove_dir(d);
	dput(d);
1527 1528 1529 1530
	up(&callback_sem);
	if (list_empty(&parent->children))
		check_for_release(parent, &pathbuf);
	up(&manage_sem);
1531
	cpuset_release_agent(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	return 0;
}

/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
	struct dentry *root;
	int err;

	top_cpuset.cpus_allowed = CPU_MASK_ALL;
	top_cpuset.mems_allowed = NODE_MASK_ALL;

	atomic_inc(&cpuset_mems_generation);
	top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);

	init_task.cpuset = &top_cpuset;

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
		goto out;
	cpuset_mount = kern_mount(&cpuset_fs_type);
	if (IS_ERR(cpuset_mount)) {
		printk(KERN_ERR "cpuset: could not mount!\n");
		err = PTR_ERR(cpuset_mount);
		cpuset_mount = NULL;
		goto out;
	}
	root = cpuset_mount->mnt_sb->s_root;
	root->d_fsdata = &top_cpuset;
	root->d_inode->i_nlink++;
	top_cpuset.dentry = root;
	root->d_inode->i_op = &cpuset_dir_inode_operations;
	err = cpuset_populate_dir(root);
out:
	return err;
}

/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
	top_cpuset.cpus_allowed = cpu_online_map;
	top_cpuset.mems_allowed = node_online_map;
}

/**
 * cpuset_fork - attach newly forked task to its parents cpuset.
1588
 * @tsk: pointer to task_struct of forking parent process.
Linus Torvalds's avatar
Linus Torvalds committed
1589
 *
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
 * Description: A task inherits its parent's cpuset at fork().
 *
 * A pointer to the shared cpuset was automatically copied in fork.c
 * by dup_task_struct().  However, we ignore that copy, since it was
 * not made under the protection of task_lock(), so might no longer be
 * a valid cpuset pointer.  attach_task() might have already changed
 * current->cpuset, allowing the previously referenced cpuset to
 * be removed and freed.  Instead, we task_lock(current) and copy
 * its present value of current->cpuset for our freshly forked child.
 *
 * At the point that cpuset_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
Linus Torvalds's avatar
Linus Torvalds committed
1602 1603
 **/

1604
void cpuset_fork(struct task_struct *child)
Linus Torvalds's avatar
Linus Torvalds committed
1605
{
1606 1607 1608 1609
	task_lock(current);
	child->cpuset = current->cpuset;
	atomic_inc(&child->cpuset->count);
	task_unlock(current);
Linus Torvalds's avatar
Linus Torvalds committed
1610 1611 1612 1613 1614 1615 1616 1617
}

/**
 * cpuset_exit - detach cpuset from exiting task
 * @tsk: pointer to task_struct of exiting process
 *
 * Description: Detach cpuset from @tsk and release it.
 *
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
 * Note that cpusets marked notify_on_release force every task in
 * them to take the global manage_sem semaphore when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cpusets where very high task exit scaling
 * is required on large systems.
 *
 * Don't even think about derefencing 'cs' after the cpuset use count
 * goes to zero, except inside a critical section guarded by manage_sem
 * or callback_sem.   Otherwise a zero cpuset use count is a license to
 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
 *
 * This routine has to take manage_sem, not callback_sem, because
 * it is holding that semaphore while calling check_for_release(),
 * which calls kmalloc(), so can't be called holding callback__sem().
 *
 * We don't need to task_lock() this reference to tsk->cpuset,
 * because tsk is already marked PF_EXITING, so attach_task() won't
 * mess with it.
Linus Torvalds's avatar
Linus Torvalds committed
1636 1637 1638 1639 1640 1641
 **/

void cpuset_exit(struct task_struct *tsk)
{
	struct cpuset *cs;

1642 1643
	BUG_ON(!(tsk->flags & PF_EXITING));

Linus Torvalds's avatar
Linus Torvalds committed
1644 1645 1646
	cs = tsk->cpuset;
	tsk->cpuset = NULL;

1647
	if (notify_on_release(cs)) {
1648 1649
		char *pathbuf = NULL;

1650
		down(&manage_sem);
1651
		if (atomic_dec_and_test(&cs->count))
1652
			check_for_release(cs, &pathbuf);
1653
		up(&manage_sem);
1654
		cpuset_release_agent(pathbuf);
1655 1656
	} else {
		atomic_dec(&cs->count);
Linus Torvalds's avatar
Linus Torvalds committed
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	}
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
 *
 * Description: Returns the cpumask_t cpus_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

1670
cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
Linus Torvalds's avatar
Linus Torvalds committed
1671 1672 1673
{
	cpumask_t mask;

1674
	down(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1675 1676 1677
	task_lock((struct task_struct *)tsk);
	guarantee_online_cpus(tsk->cpuset, &mask);
	task_unlock((struct task_struct *)tsk);
1678
	up(&callback_sem);
Linus Torvalds's avatar
Linus Torvalds committed
1679 1680 1681 1682 1683 1684 1685 1686 1687

	return mask;
}

void cpuset_init_current_mems_allowed(void)
{
	current->mems_allowed = NODE_MASK_ALL;
}

1688 1689 1690
/**
 * cpuset_update_current_mems_allowed - update mems parameters to new values
 *
Linus Torvalds's avatar
Linus Torvalds committed
1691 1692 1693
 * If the current tasks cpusets mems_allowed changed behind our backs,
 * update current->mems_allowed and mems_generation to the new value.
 * Do not call this routine if in_interrupt().
1694 1695 1696 1697 1698
 *
 * Call without callback_sem or task_lock() held.  May be called
 * with or without manage_sem held.  Unless exiting, it will acquire
 * task_lock().  Also might acquire callback_sem during call to
 * refresh_mems().
Linus Torvalds's avatar
Linus Torvalds committed
1699 1700 1701 1702
 */

void cpuset_update_current_mems_allowed(void)
{
1703 1704
	struct cpuset *cs;
	int need_to_refresh = 0;
Linus Torvalds's avatar
Linus Torvalds committed
1705

1706 1707
	task_lock(current);
	cs = current->cpuset;
Linus Torvalds's avatar
Linus Torvalds committed
1708
	if (!cs)
1709 1710 1711 1712 1713 1714
		goto done;
	if (current->cpuset_mems_generation != cs->mems_generation)
		need_to_refresh = 1;
done:
	task_unlock(current);
	if (need_to_refresh)
Linus Torvalds's avatar
Linus Torvalds committed
1715 1716 1717
		refresh_mems();
}

1718 1719 1720 1721
/**
 * cpuset_restrict_to_mems_allowed - limit nodes to current mems_allowed
 * @nodes: pointer to a node bitmap that is and-ed with mems_allowed
 */
Linus Torvalds's avatar
Linus Torvalds committed
1722 1723 1724 1725 1726 1727
void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
{
	bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
							MAX_NUMNODES);
}

1728 1729 1730 1731
/**
 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
 * @zl: the zonelist to be checked
 *
Linus Torvalds's avatar
Linus Torvalds committed
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
 */
int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
{
	int i;

	for (i = 0; zl->zones[i]; i++) {
		int nid = zl->zones[i]->zone_pgdat->node_id;

		if (node_isset(nid, current->mems_allowed))
			return 1;
	}
	return 0;
}

1747 1748
/*
 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1749
 * ancestor to the specified cpuset.  Call holding callback_sem.
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
 * If no ancestor is mem_exclusive (an unusual configuration), then
 * returns the root cpuset.
 */
static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
{
	while (!is_mem_exclusive(cs) && cs->parent)
		cs = cs->parent;
	return cs;
}

1760
/**
1761 1762 1763
 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
1764
 *
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
 * If we're in interrupt, yes, we can always allocate.  If zone
 * z's node is in our tasks mems_allowed, yes.  If it's not a
 * __GFP_HARDWALL request and this zone's nodes is in the nearest
 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
 * and do not allow allocations outside the current tasks cpuset.
 * GFP_KERNEL allocations are not so marked, so can escape to the
 * nearest mem_exclusive ancestor cpuset.
 *
1776
 * Scanning up parent cpusets requires callback_sem.  The __alloc_pages()
1777 1778 1779 1780
 * routine only calls here with __GFP_HARDWALL bit _not_ set if
 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
 * mems_allowed came up empty on the first pass over the zonelist.
 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
1781
 * short of memory, might require taking the callback_sem semaphore.
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
 *
 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
 * hardwall cpusets - no allocation on a node outside the cpuset is
 * allowed (unless in interrupt, of course).
 *
 * The second loop doesn't even call here for GFP_ATOMIC requests
 * (if the __alloc_pages() local variable 'wait' is set).  That check
 * and the checks below have the combined affect in the second loop of
 * the __alloc_pages() routine that:
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
 *	GFP_KERNEL   - any node in enclosing mem_exclusive cpuset ok
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
 **/

1798
int cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
Linus Torvalds's avatar
Linus Torvalds committed
1799
{
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	int node;			/* node that zone z is on */
	const struct cpuset *cs;	/* current cpuset ancestors */
	int allowed = 1;		/* is allocation in zone z allowed? */

	if (in_interrupt())
		return 1;
	node = z->zone_pgdat->node_id;
	if (node_isset(node, current->mems_allowed))
		return 1;
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

1812 1813 1814
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

1815
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
1816 1817 1818 1819 1820 1821
	down(&callback_sem);

	task_lock(current);
	cs = nearest_exclusive_ancestor(current->cpuset);
	task_unlock(current);

1822
	allowed = node_isset(node, cs->mems_allowed);
1823
	up(&callback_sem);
1824
	return allowed;
Linus Torvalds's avatar
Linus Torvalds committed
1825 1826
}

Paul Jackson's avatar