cpuset.c 67.2 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
Paul Jackson's avatar
Paul Jackson committed
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
Linus Torvalds's avatar
Linus Torvalds committed
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
Linus Torvalds's avatar
Linus Torvalds committed
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
Linus Torvalds's avatar
Linus Torvalds committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
35
#include <linux/mempolicy.h>
Linus Torvalds's avatar
Linus Torvalds committed
36 37 38 39 40
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
Paul Menage's avatar
Paul Menage committed
41
#include <linux/prio_heap.h>
Linus Torvalds's avatar
Linus Torvalds committed
42
#include <linux/proc_fs.h>
43
#include <linux/rcupdate.h>
Linus Torvalds's avatar
Linus Torvalds committed
44 45
#include <linux/sched.h>
#include <linux/seq_file.h>
46
#include <linux/security.h>
Linus Torvalds's avatar
Linus Torvalds committed
47 48 49 50 51 52 53 54 55 56
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
57
#include <linux/mutex.h>
Paul Jackson's avatar
Paul Jackson committed
58
#include <linux/kfifo.h>
Linus Torvalds's avatar
Linus Torvalds committed
59

60 61 62 63 64
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
65
int number_of_cpusets __read_mostly;
66

67 68 69 70
/* Retrieve the cpuset from a cgroup */
struct cgroup_subsys cpuset_subsys;
struct cpuset;

71 72 73 74 75 76 77 78 79
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

Linus Torvalds's avatar
Linus Torvalds committed
80
struct cpuset {
81 82
	struct cgroup_subsys_state css;

Linus Torvalds's avatar
Linus Torvalds committed
83 84 85 86 87 88 89 90 91 92
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
93 94 95
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
Paul Jackson's avatar
Paul Jackson committed
96 97 98

	/* partition number for rebuild_sched_domains() */
	int pn;
Linus Torvalds's avatar
Linus Torvalds committed
99 100
};

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}


Linus Torvalds's avatar
Linus Torvalds committed
116 117 118 119
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
120
	CS_MEMORY_MIGRATE,
Paul Jackson's avatar
Paul Jackson committed
121
	CS_SCHED_LOAD_BALANCE,
122 123
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
124 125 126 127 128
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
129
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
130 131 132 133
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
134
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
135 136
}

Paul Jackson's avatar
Paul Jackson committed
137 138 139 140 141
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

142 143
static inline int is_memory_migrate(const struct cpuset *cs)
{
144
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
145 146
}

147 148 149 150 151 152 153 154 155 156
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

Linus Torvalds's avatar
Linus Torvalds committed
157
/*
158
 * Increment this integer everytime any cpuset changes its
Linus Torvalds's avatar
Linus Torvalds committed
159 160 161 162 163 164 165 166 167 168 169 170 171
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
 * A single, global generation is needed because attach_task() could
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
 * modify anothers memory placement.  So we must enable every task,
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
172 173 174
 *
 * Since cpuset_mems_generation is guarded by manage_mutex,
 * there is no need to mark it atomic.
Linus Torvalds's avatar
Linus Torvalds committed
175
 */
176
static int cpuset_mems_generation;
Linus Torvalds's avatar
Linus Torvalds committed
177 178 179 180 181 182 183 184

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
};

/*
185 186
 * We have two global cpuset mutexes below.  They can nest.
 * It is ok to first take manage_mutex, then nest callback_mutex.  We also
187 188 189
 * require taking task_lock() when dereferencing a tasks cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
190 191 192
 * A task must hold both mutexes to modify cpusets.  If a task
 * holds manage_mutex, then it blocks others wanting that mutex,
 * ensuring that it is the only task able to also acquire callback_mutex
193 194
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
195
 * also allocate memory while just holding manage_mutex.  While it is
196
 * performing these checks, various callback routines can briefly
197 198
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
199 200
 *
 * Calls to the kernel memory allocator can not be made while holding
201
 * callback_mutex, as that would risk double tripping on callback_mutex
202 203 204
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
205
 * If a task is only holding callback_mutex, then it has read-only
206 207 208 209 210 211
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * Any task can increment and decrement the count field without lock.
212
 * So in general, code holding manage_mutex or callback_mutex can't rely
213
 * on the count field not changing.  However, if the count goes to
214
 * zero, then only attach_task(), which holds both mutexes, can
215 216 217
 * increment it again.  Because a count of zero means that no tasks
 * are currently attached, therefore there is no way a task attached
 * to that cpuset can fork (the other way to increment the count).
218
 * So code holding manage_mutex or callback_mutex can safely assume that
219
 * if the count is zero, it will stay zero.  Similarly, if a task
220
 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
221
 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
222
 * both of those mutexes.
223 224
 *
 * The cpuset_common_file_write handler for operations that modify
225
 * the cpuset hierarchy holds manage_mutex across the entire operation,
226 227
 * single threading all such cpuset modifications across the system.
 *
228
 * The cpuset_common_file_read() handlers only hold callback_mutex across
229 230 231 232
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
233
 * (usually) take either mutex.  These are the two most performance
234
 * critical pieces of code here.  The exception occurs on cpuset_exit(),
235
 * when a task in a notify_on_release cpuset exits.  Then manage_mutex
236
 * is taken, and if the cpuset count is zero, a usermode call made
Linus Torvalds's avatar
Linus Torvalds committed
237 238 239
 * to /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
240 241 242
 * A cpuset can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cpusets is empty.  Since all
 * tasks in the system use _some_ cpuset, and since there is always at
243
 * least one task in the system (init), therefore, top_cpuset
244 245 246 247 248 249 250 251 252
 * always has either children cpusets and/or using tasks.  So we don't
 * need a special hack to ensure that top_cpuset cannot be deleted.
 *
 * The above "Tale of Two Semaphores" would be complete, but for:
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of attach_task(),
 * which overwrites one tasks cpuset pointer with another.  It does
253
 * so using both mutexes, however there are several performance
254
 * critical places that need to reference task->cpuset without the
255
 * expense of grabbing a system global mutex.  Therefore except as
256 257 258 259
 * noted below, when dereferencing or, as in attach_task(), modifying
 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
 * (task->alloc_lock) already in the task_struct routinely used for
 * such matters.
260 261 262 263 264
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cpuset pointer by attach_task() and the
 * access of task->cpuset->mems_generation via that pointer in
 * the routine cpuset_update_task_memory_state().
Linus Torvalds's avatar
Linus Torvalds committed
265 266
 */

267
static DEFINE_MUTEX(callback_mutex);
268

269 270 271
/* This is ugly, but preserves the userspace API for existing cpuset
 * users. If someone tries to mount the "cpuset" filesystem, we
 * silently switch it to mount "cgroup" instead */
272 273 274
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
Linus Torvalds's avatar
Linus Torvalds committed
275
{
276 277 278 279 280 281 282 283 284 285 286
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
305
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
321 322 323 324
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
325 326
 *
 * One way or another, we guarantee to return some non-empty subset
327
 * of node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
328
 *
329
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
330 331 332 333
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
334 335
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
Linus Torvalds's avatar
Linus Torvalds committed
336 337
		cs = cs->parent;
	if (cs)
338 339
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
Linus Torvalds's avatar
Linus Torvalds committed
340
	else
341 342
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
Linus Torvalds's avatar
Linus Torvalds committed
343 344
}

345 346 347 348 349 350
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
351
 *
352 353 354 355
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
356 357 358 359
 * Call without callback_mutex or task_lock() held.  May be
 * called with or without manage_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
 * be NULL.  This routine also might acquire callback_mutex and
360
 * current->mm->mmap_sem during call.
361
 *
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
 * from concurrent freeing of current->cpuset by attach_task(),
 * using RCU.
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
380 381 382 383 384
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
Linus Torvalds's avatar
Linus Torvalds committed
385 386
 */

387
void cpuset_update_task_memory_state(void)
Linus Torvalds's avatar
Linus Torvalds committed
388
{
389
	int my_cpusets_mem_gen;
390
	struct task_struct *tsk = current;
391
	struct cpuset *cs;
392

393
	if (task_cs(tsk) == &top_cpuset) {
394 395 396 397
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
398
		my_cpusets_mem_gen = task_cs(current)->mems_generation;
399 400
		rcu_read_unlock();
	}
Linus Torvalds's avatar
Linus Torvalds committed
401

402
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
403
		mutex_lock(&callback_mutex);
404
		task_lock(tsk);
405
		cs = task_cs(tsk); /* Maybe changed when task not locked */
406 407
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
408 409 410 411 412 413 414 415
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
416
		task_unlock(tsk);
417
		mutex_unlock(&callback_mutex);
418
		mpol_rebind_task(tsk, &tsk->mems_allowed);
Linus Torvalds's avatar
Linus Torvalds committed
419 420 421 422 423 424 425 426
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
427
 * are only set if the other's are set.  Call holding manage_mutex.
Linus Torvalds's avatar
Linus Torvalds committed
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
445
 * manage_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
446 447 448 449 450 451 452 453 454 455 456 457 458 459
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
460
	struct cgroup *cont;
Linus Torvalds's avatar
Linus Torvalds committed
461 462 463
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
464 465
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
Linus Torvalds's avatar
Linus Torvalds committed
466 467 468 469
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
470
	if (cur == &top_cpuset)
Linus Torvalds's avatar
Linus Torvalds committed
471 472
		return 0;

473 474
	par = cur->parent;

Linus Torvalds's avatar
Linus Torvalds committed
475 476 477 478 479
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

	/* If either I or some sibling (!= me) is exclusive, we can't overlap */
480 481
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
Linus Torvalds's avatar
Linus Torvalds committed
482 483 484 485 486 487 488 489 490 491
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

492 493 494 495 496 497 498 499
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
		if (cpus_empty(trial->cpus_allowed) ||
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

Linus Torvalds's avatar
Linus Torvalds committed
500 501 502
	return 0;
}

Paul Jackson's avatar
Paul Jackson committed
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/*
 * Helper routine for rebuild_sched_domains().
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */

static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
	return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
}

/*
 * rebuild_sched_domains()
 *
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
 *
 * This routine builds a partial partition of the systems CPUs
 * (the set of non-overlappping cpumask_t's in the array 'part'
 * below), and passes that partial partition to the kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the
 * schedulers load balancing domains (sched domains) as specified
 * by that partial partition.  A 'partial partition' is a set of
 * non-overlapping subsets whose union is a subset of that set.
 *
 * See "What is sched_load_balance" in Documentation/cpusets.txt
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during
 * call due to the kfifo_alloc() and kmalloc() calls.  May nest
 * a call to the lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
 * Must not be called holding callback_mutex, because we must not
 * call lock_cpu_hotplug() while holding callback_mutex.  Elsewhere
 * the kernel nests callback_mutex inside lock_cpu_hotplug() calls.
 * So the reverse nesting would risk an ABBA deadlock.
 *
 * The three key local variables below are:
 *    q  - a kfifo queue of cpuset pointers, used to implement a
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */

static void rebuild_sched_domains(void)
{
	struct kfifo *q;	/* queue of cpusets to be scanned */
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
	cpumask_t *doms;	/* resulting partition; i.e. sched domains */
	int ndoms;		/* number of sched domains in result */
	int nslot;		/* next empty doms[] cpumask_t slot */

	q = NULL;
	csa = NULL;
	doms = NULL;

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
		ndoms = 1;
		doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
		if (!doms)
			goto rebuild;
		*doms = top_cpuset.cpus_allowed;
		goto rebuild;
	}

	q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
	if (IS_ERR(q))
		goto done;
	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

	cp = &top_cpuset;
	__kfifo_put(q, (void *)&cp, sizeof(cp));
	while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			__kfifo_put(q, (void *)&child, sizeof(cp));
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

	/* Convert <csn, csa> to <ndoms, doms> */
	doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
	if (!doms)
		goto rebuild;

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		if (apn >= 0) {
			cpumask_t *dp = doms + nslot;

			if (nslot == ndoms) {
				static int warnings = 10;
				if (warnings) {
					printk(KERN_WARNING
					 "rebuild_sched_domains confused:"
					  " nslot %d, ndoms %d, csn %d, i %d,"
					  " apn %d\n",
					  nslot, ndoms, csn, i, apn);
					warnings--;
				}
				continue;
			}

			cpus_clear(*dp);
			for (j = i; j < csn; j++) {
				struct cpuset *b = csa[j];

				if (apn == b->pn) {
					cpus_or(*dp, *dp, b->cpus_allowed);
					b->pn = -1;
				}
			}
			nslot++;
		}
	}
	BUG_ON(nslot != ndoms);

rebuild:
	/* Have scheduler rebuild sched domains */
	lock_cpu_hotplug();
	partition_sched_domains(ndoms, doms);
	unlock_cpu_hotplug();

done:
	if (q && !IS_ERR(q))
		kfifo_free(q);
	kfree(csa);
	/* Don't kfree(doms) -- partition_sched_domains() does that. */
}

Paul Menage's avatar
Paul Menage committed
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively)
		 * simultaneously.
		 */
		return t1 > t2;
	}
}

static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

735
/*
736
 * Call with manage_mutex held.  May take callback_mutex during call.
737 738
 */

Linus Torvalds's avatar
Linus Torvalds committed
739 740 741
static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
Paul Menage's avatar
Paul Menage committed
742 743 744 745 746 747 748 749 750
	int retval, i;
	int is_load_balanced;
	struct cgroup_iter it;
	struct cgroup *cgrp = cs->css.cgroup;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap heap;
	struct timespec latest_time = { 0, 0 };
Linus Torvalds's avatar
Linus Torvalds committed
751

752 753 754 755
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

Linus Torvalds's avatar
Linus Torvalds committed
756
	trialcs = *cs;
757 758

	/*
759 760 761 762
	 * An empty cpus_allowed is ok iff there are no tasks in the cpuset.
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
763
	 */
764 765
	buf = strstrip(buf);
	if (!*buf) {
766 767 768 769 770 771
		cpus_clear(trialcs.cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs.cpus_allowed);
		if (retval < 0)
			return retval;
	}
Linus Torvalds's avatar
Linus Torvalds committed
772 773
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
	retval = validate_change(cs, &trialcs);
774 775
	if (retval < 0)
		return retval;
Paul Jackson's avatar
Paul Jackson committed
776

Paul Menage's avatar
Paul Menage committed
777 778 779 780 781 782 783
	/* Nothing to do if the cpus didn't change */
	if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
		return 0;
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
	if (retval)
		return retval;

Paul Jackson's avatar
Paul Jackson committed
784 785
	is_load_balanced = is_sched_load_balance(&trialcs);

786
	mutex_lock(&callback_mutex);
787
	cs->cpus_allowed = trialcs.cpus_allowed;
788
	mutex_unlock(&callback_mutex);
Paul Jackson's avatar
Paul Jackson committed
789

Paul Menage's avatar
Paul Menage committed
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
 again:
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
	 * that need an update. Since we can't call set_cpus_allowed()
	 * while holding tasklist_lock, gather tasks to be processed
	 * in a heap structure. If the statically-sized heap fills up,
	 * overflow tasks that started later, and in future iterations
	 * only consider tasks that started after the latest task in
	 * the previous pass. This guarantees forward progress and
	 * that we don't miss any tasks
	 */
	heap.size = 0;
	cgroup_iter_start(cgrp, &it);
	while ((p = cgroup_iter_next(cgrp, &it))) {
		/* Only affect tasks that don't have the right cpus_allowed */
		if (cpus_equal(p->cpus_allowed, cs->cpus_allowed))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(&heap, p);
		if (dropped == NULL) {
			get_task_struct(p);
		} else if (dropped != p) {
			get_task_struct(p);
			put_task_struct(dropped);
		}
	}
	cgroup_iter_end(cgrp, &it);
	if (heap.size) {
		for (i = 0; i < heap.size; i++) {
			struct task_struct *p = heap.ptrs[i];
			if (i == 0) {
				latest_time = p->start_time;
				latest_task = p;
			}
			set_cpus_allowed(p, cs->cpus_allowed);
			put_task_struct(p);
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't notice the new cpumask
		 * restriction.  Not the most efficient way to do it,
		 * but it avoids having to take callback_mutex in the
		 * fork path
		 */
		goto again;
	}
	heap_free(&heap);
	if (is_load_balanced)
Paul Jackson's avatar
Paul Jackson committed
844 845
		rebuild_sched_domains();

846
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
847 848
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    Call holding manage_mutex, so our current->cpuset won't change
 *    during this call, as manage_mutex holds off any attach_task()
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
 *    our tasks cpuset.
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
894
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
895 896 897
	mutex_unlock(&callback_mutex);
}

898
/*
899 900 901
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
902 903 904
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
905
 *
906
 * Call with manage_mutex held.  May take callback_mutex during call.
907 908 909
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
910 911
 */

912 913
static void *cpuset_being_rebound;

Linus Torvalds's avatar
Linus Torvalds committed
914 915 916
static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
917
	nodemask_t oldmem;
918
	struct task_struct *p;
919 920
	struct mm_struct **mmarray;
	int i, n, ntasks;
921
	int migrate;
922
	int fudge;
Linus Torvalds's avatar
Linus Torvalds committed
923
	int retval;
924
	struct cgroup_iter it;
Linus Torvalds's avatar
Linus Torvalds committed
925

926 927 928 929
	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
930 931 932
	if (cs == &top_cpuset)
		return -EACCES;

Linus Torvalds's avatar
Linus Torvalds committed
933
	trialcs = *cs;
934 935

	/*
936 937 938 939
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
940
	 */
941 942
	buf = strstrip(buf);
	if (!*buf) {
943 944 945 946 947 948
		nodes_clear(trialcs.mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs.mems_allowed);
		if (retval < 0)
			goto done;
	}
949 950
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
						node_states[N_HIGH_MEMORY]);
951 952 953 954 955
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
956 957 958 959
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

960
	mutex_lock(&callback_mutex);
961
	cs->mems_allowed = trialcs.mems_allowed;
962
	cs->mems_generation = cpuset_mems_generation++;
963
	mutex_unlock(&callback_mutex);
964

965
	cpuset_being_rebound = cs;		/* causes mpol_copy() rebind */
966 967 968 969 970 971 972 973 974 975 976 977 978

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
979
		ntasks = cgroup_task_count(cs->css.cgroup);  /* guess */
980 981 982 983
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
984
		read_lock(&tasklist_lock);		/* block fork */
985
		if (cgroup_task_count(cs->css.cgroup) <= ntasks)
986
			break;				/* got enough */
987
		read_unlock(&tasklist_lock);		/* try again */
988 989 990 991 992 993
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
994 995
	cgroup_iter_start(cs->css.cgroup, &it);
	while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
996 997 998 999 1000
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
1001
			break;
1002 1003 1004 1005 1006
		}
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
1007 1008
	}
	cgroup_iter_end(cs->css.cgroup, &it);
1009
	read_unlock(&tasklist_lock);
1010 1011 1012 1013 1014 1015 1016 1017 1018

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
	 * tasklist_lock.  Forks can happen again now - the mpol_copy()
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
1019
	 * cpuset manage_mutex, we know that no other rebind effort will
1020 1021
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1022
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1023
	 */
1024
	migrate = is_memory_migrate(cs);
1025 1026 1027 1028
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
1029 1030
		if (migrate)
			cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
1031 1032 1033 1034 1035
		mmput(mm);
	}

	/* We're done rebinding vma's to this cpusets new mems_allowed. */
	kfree(mmarray);
1036
	cpuset_being_rebound = NULL;
1037
	retval = 0;
1038
done:
Linus Torvalds's avatar
Linus Torvalds committed
1039 1040 1041
	return retval;
}

1042 1043 1044 1045 1046
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1047
/*
1048
 * Call with manage_mutex held.
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
1060 1061 1062
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
Paul Jackson's avatar
Paul Jackson committed
1063
 *				CS_SCHED_LOAD_BALANCE,
1064 1065
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
Linus Torvalds's avatar
Linus Torvalds committed
1066 1067
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
1068
 *
1069
 * Call with manage_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
1070 1071 1072 1073 1074 1075
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
1076
	int err;
Paul Jackson's avatar
Paul Jackson committed
1077
	int cpus_nonempty, balance_flag_changed;
Linus Torvalds's avatar
Linus Torvalds committed
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1088 1089
	if (err < 0)
		return err;
Paul Jackson's avatar
Paul Jackson committed
1090 1091 1092 1093 1094

	cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
	balance_flag_changed = (is_sched_load_balance(cs) !=
		 			is_sched_load_balance(&trialcs));

1095
	mutex_lock(&callback_mutex);
1096
	cs->flags = trialcs.flags;
1097
	mutex_unlock(&callback_mutex);
1098

Paul Jackson's avatar
Paul Jackson committed
1099 1100 1101
	if (cpus_nonempty && balance_flag_changed)
		rebuild_sched_domains();

1102
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
1103 1104
}

1105
/*
1106
 * Frequency meter - How fast is some event occurring?
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1203 1204
static int cpuset_can_attach(struct cgroup_subsys *ss,
			     struct cgroup *cont, struct task_struct *tsk)
Linus Torvalds's avatar
Linus Torvalds committed
1205
{
1206
	struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds's avatar
Linus Torvalds committed
1207 1208 1209 1210

	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

1211 1212
	return security_task_setscheduler(tsk, 0, NULL);
}
Linus Torvalds's avatar
Linus Torvalds committed
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222
static void cpuset_attach(struct cgroup_subsys *ss,
			  struct cgroup *cont, struct cgroup *oldcont,
			  struct task_struct *tsk)
{
	cpumask_t cpus;
	nodemask_t from, to;
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);
1223

1224
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1225 1226
	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);
1227
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1228

1229 1230
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;
1231 1232 1233
	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1234
		if (is_memory_migrate(cs))
1235
			cpuset_migrate_mm(mm, &from, &to);
1236 1237 1238
		mmput(mm);
	}

Linus Torvalds's avatar
Linus Torvalds committed
1239 1240 1241 1242 1243
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1244
	FILE_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
1245 1246 1247 1248
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
Paul Jackson's avatar
Paul Jackson committed
1249
	FILE_SCHED_LOAD_BALANCE,
1250 1251
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1252 1253
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
1254 1255
} cpuset_filetype_t;

1256 1257 1258
static ssize_t cpuset_common_file_write(struct cgroup *cont,
					struct cftype *cft,
					struct file *file,
1259
					const char __user *userbuf,
Linus Torvalds's avatar
Linus Torvalds committed
1260 1261
					size_t nbytes, loff_t *unused_ppos)
{
1262
	struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds's avatar
Linus Torvalds committed
1263 1264 1265 1266 1267
	cpuset_filetype_t type = cft->private;
	char *buffer;
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
Paul Jackson's avatar
Paul Jackson committed
1268
	if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
Linus Torvalds's avatar
Linus Torvalds committed
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

1281
	cgroup_lock();
Linus Torvalds's avatar
Linus Torvalds committed
1282

1283
	if (cgroup_is_removed(cont)) {
Linus Torvalds's avatar
Linus Torvalds committed
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
Paul Jackson's avatar
Paul Jackson committed
1301 1302 1303
	case FILE_SCHED_LOAD_BALANCE:
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, buffer);
		break;
1304 1305 1306
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
1307 1308 1309 1310 1311 1312
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1313 1314
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
1315
		cs->mems_generation = cpuset_mems_generation++;
1316 1317 1318
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1319
		cs->mems_generation = cpuset_mems_generation++;
1320
		break;
Linus Torvalds's avatar
Linus Torvalds committed
1321 1322 1323 1324 1325 1326 1327 1328
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
1329
	cgroup_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
out1:
	kfree(buffer);
	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1351
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1352
	mask = cs->cpus_allowed;
1353
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1354 1355 1356 1357 1358 1359 1360 1361

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1362
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1363
	mask = cs->mems_allowed;
1364
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1365 1366 1367 1368

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

1369 1370 1371 1372 1373
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
Linus Torvalds's avatar
Linus Torvalds committed
1374
{
1375
	struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds's avatar
Linus Torvalds committed
1376 1377 1378 1379 1380
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1381
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
Linus Torvalds's avatar
Linus Torvalds committed
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
Paul Jackson's avatar
Paul Jackson committed
1399 1400 1401
	case FILE_SCHED_LOAD_BALANCE:
		*s++ = is_sched_load_balance(cs) ? '1' : '0';
		break;
1402 1403 1404
	case FILE_MEMORY_MIGRATE:
		*s++ = is_memory_migrate(cs) ? '1' : '0';
		break;
1405 1406 1407 1408 1409 1410
	case FILE_MEMORY_PRESSURE_ENABLED:
		*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE<