cpuset.c 71.7 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
Paul Jackson's avatar
Paul Jackson committed
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
Linus Torvalds's avatar
Linus Torvalds committed
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
Linus Torvalds's avatar
Linus Torvalds committed
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
Linus Torvalds's avatar
Linus Torvalds committed
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
Linus Torvalds's avatar
Linus Torvalds committed
38
#include <linux/mm.h>
39
#include <linux/memory.h>
Linus Torvalds's avatar
Linus Torvalds committed
40 41 42 43 44
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
Linus Torvalds's avatar
Linus Torvalds committed
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
Linus Torvalds's avatar
Linus Torvalds committed
49 50 51 52 53 54 55 56 57 58
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
Linus Torvalds's avatar
Linus Torvalds committed
62

63 64 65 66 67 68 69 70
/*
 * Workqueue for cpuset related tasks.
 *
 * Using kevent workqueue may cause deadlock when memory_migrate
 * is set. So we create a separate workqueue thread for cpuset.
 */
static struct workqueue_struct *cpuset_wq;

71 72 73 74 75
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
76
int number_of_cpusets __read_mostly;
77

78
/* Forward declare cgroup structures */
79 80 81
struct cgroup_subsys cpuset_subsys;
struct cpuset;

82 83 84 85 86 87 88 89 90
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

Linus Torvalds's avatar
Linus Torvalds committed
91
struct cpuset {
92 93
	struct cgroup_subsys_state css;

Linus Torvalds's avatar
Linus Torvalds committed
94
	unsigned long flags;		/* "unsigned long" so bitops work */
95
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
Linus Torvalds's avatar
Linus Torvalds committed
96 97 98 99
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

100
	struct fmeter fmeter;		/* memory_pressure filter */
Paul Jackson's avatar
Paul Jackson committed
101 102 103

	/* partition number for rebuild_sched_domains() */
	int pn;
104

105 106 107
	/* for custom sched domain */
	int relax_domain_level;

108 109
	/* used for walking a cpuset heirarchy */
	struct list_head stack_list;
Linus Torvalds's avatar
Linus Torvalds committed
110 111
};

112 113 114 115 116 117 118 119 120 121 122 123 124 125
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

Linus Torvalds's avatar
Linus Torvalds committed
126 127 128 129
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
130
	CS_MEM_HARDWALL,
131
	CS_MEMORY_MIGRATE,
Paul Jackson's avatar
Paul Jackson committed
132
	CS_SCHED_LOAD_BALANCE,
133 134
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
135 136 137 138 139
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
140
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
141 142 143 144
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
145
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
146 147
}

148 149 150 151 152
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

Paul Jackson's avatar
Paul Jackson committed
153 154 155 156 157
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

158 159
static inline int is_memory_migrate(const struct cpuset *cs)
{
160
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161 162
}

163 164 165 166 167 168 169 170 171 172
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

Linus Torvalds's avatar
Linus Torvalds committed
173 174 175 176 177
static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
};

/*
178 179 180 181 182 183 184
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
185
 *
186
 * A task must hold both mutexes to modify cpusets.  If a task
187
 * holds cgroup_mutex, then it blocks others wanting that mutex,
188
 * ensuring that it is the only task able to also acquire callback_mutex
189 190
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
191
 * also allocate memory while just holding cgroup_mutex.  While it is
192
 * performing these checks, various callback routines can briefly
193 194
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
195 196
 *
 * Calls to the kernel memory allocator can not be made while holding
197
 * callback_mutex, as that would risk double tripping on callback_mutex
198 199 200
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
201
 * If a task is only holding callback_mutex, then it has read-only
202 203
 * access to cpusets.
 *
204 205 206
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
207
 *
208
 * The cpuset_common_file_read() handlers only hold callback_mutex across
209 210 211
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
212 213
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
Linus Torvalds's avatar
Linus Torvalds committed
214 215
 */

216
static DEFINE_MUTEX(callback_mutex);
217

218 219 220 221 222 223 224 225 226 227 228
/*
 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 * buffers.  They are statically allocated to prevent using excess stack
 * when calling cpuset_print_task_mems_allowed().
 */
#define CPUSET_NAME_LEN		(128)
#define	CPUSET_NODELIST_LEN	(256)
static char cpuset_name[CPUSET_NAME_LEN];
static char cpuset_nodelist[CPUSET_NODELIST_LEN];
static DEFINE_SPINLOCK(cpuset_buffer_lock);

229 230
/*
 * This is ugly, but preserves the userspace API for existing cpuset
231
 * users. If someone tries to mount the "cpuset" filesystem, we
232 233
 * silently switch it to mount "cgroup" instead
 */
234 235 236
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
Linus Torvalds's avatar
Linus Torvalds committed
237
{
238 239 240 241 242 243 244 245 246 247 248
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
249 250 251 252 253 254 255 256
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
257
 * Return in pmask the portion of a cpusets's cpus_allowed that
Linus Torvalds's avatar
Linus Torvalds committed
258 259 260 261 262 263 264 265 266
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
267
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
268 269
 */

270 271
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
Linus Torvalds's avatar
Linus Torvalds committed
272
{
273
	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
Linus Torvalds's avatar
Linus Torvalds committed
274 275
		cs = cs->parent;
	if (cs)
276
		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
Linus Torvalds's avatar
Linus Torvalds committed
277
	else
278 279
		cpumask_copy(pmask, cpu_online_mask);
	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
Linus Torvalds's avatar
Linus Torvalds committed
280 281 282 283
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
284 285 286 287
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
288 289
 *
 * One way or another, we guarantee to return some non-empty subset
290
 * of node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
291
 *
292
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
293 294 295 296
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
297 298
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
Linus Torvalds's avatar
Linus Torvalds committed
299 300
		cs = cs->parent;
	if (cs)
301 302
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
Linus Torvalds's avatar
Linus Torvalds committed
303
	else
304 305
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
Linus Torvalds's avatar
Linus Torvalds committed
306 307
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
 * Called with callback_mutex/cgroup_mutex held
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

Linus Torvalds's avatar
Linus Torvalds committed
326 327 328 329 330
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
331
 * are only set if the other's are set.  Call holding cgroup_mutex.
Linus Torvalds's avatar
Linus Torvalds committed
332 333 334 335
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
336
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
Linus Torvalds's avatar
Linus Torvalds committed
337 338 339 340 341
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

342 343 344 345 346 347
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
348 349 350 351 352 353 354 355 356 357 358 359 360
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
361 362 363 364 365 366 367 368
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
369
	free_cpumask_var(trial->cpus_allowed);
370 371 372
	kfree(trial);
}

Linus Torvalds's avatar
Linus Torvalds committed
373 374 375 376 377 378 379
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
380
 * cgroup_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
381 382 383 384 385 386 387 388 389 390 391 392 393 394
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
395
	struct cgroup *cont;
Linus Torvalds's avatar
Linus Torvalds committed
396 397 398
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
399 400
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
Linus Torvalds's avatar
Linus Torvalds committed
401 402 403 404
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
405
	if (cur == &top_cpuset)
Linus Torvalds's avatar
Linus Torvalds committed
406 407
		return 0;

408 409
	par = cur->parent;

Linus Torvalds's avatar
Linus Torvalds committed
410 411 412 413
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

414 415 416 417
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
418 419
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
Linus Torvalds's avatar
Linus Torvalds committed
420 421
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
422
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
Linus Torvalds's avatar
Linus Torvalds committed
423 424 425 426 427 428 429
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

430 431
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
432
		if (cpumask_empty(trial->cpus_allowed) ||
433 434 435 436 437
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

Linus Torvalds's avatar
Linus Torvalds committed
438 439 440
	return 0;
}

441
#ifdef CONFIG_SMP
Paul Jackson's avatar
Paul Jackson committed
442
/*
443
 * Helper routine for generate_sched_domains().
Paul Jackson's avatar
Paul Jackson committed
444 445 446 447
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
448
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
Paul Jackson's avatar
Paul Jackson committed
449 450
}

451 452 453 454 455 456 457 458
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
{
	LIST_HEAD(q);

	list_add(&c->stack_list, &q);
	while (!list_empty(&q)) {
		struct cpuset *cp;
		struct cgroup *cont;
		struct cpuset *child;

		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

473
		if (cpumask_empty(cp->cpus_allowed))
474 475 476 477 478 479 480 481 482 483 484 485
			continue;

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);

		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &q);
		}
	}
}

Paul Jackson's avatar
Paul Jackson committed
486
/*
487 488 489 490 491 492 493 494 495
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
Paul Jackson's avatar
Paul Jackson committed
496
 *
497
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
Paul Jackson's avatar
Paul Jackson committed
498 499 500 501 502 503 504
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
505
 * Must be called with cgroup_lock held.
Paul Jackson's avatar
Paul Jackson committed
506 507
 *
 * The three key local variables below are:
508
 *    q  - a linked-list queue of cpuset pointers, used to implement a
Paul Jackson's avatar
Paul Jackson committed
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
540 541
/* FIXME: see the FIXME in partition_sched_domains() */
static int generate_sched_domains(struct cpumask **domains,
542
			struct sched_domain_attr **attributes)
Paul Jackson's avatar
Paul Jackson committed
543
{
544
	LIST_HEAD(q);		/* queue of cpusets to be scanned */
Paul Jackson's avatar
Paul Jackson committed
545 546 547 548
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
549
	struct cpumask *doms;	/* resulting partition; i.e. sched domains */
550
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
551
	int ndoms = 0;		/* number of sched domains in result */
552
	int nslot;		/* next empty doms[] struct cpumask slot */
Paul Jackson's avatar
Paul Jackson committed
553 554

	doms = NULL;
555
	dattr = NULL;
556
	csa = NULL;
Paul Jackson's avatar
Paul Jackson committed
557 558 559

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
560
		doms = kmalloc(cpumask_size(), GFP_KERNEL);
Paul Jackson's avatar
Paul Jackson committed
561
		if (!doms)
562 563
			goto done;

564 565 566
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
567
			update_domain_attr_tree(dattr, &top_cpuset);
568
		}
569
		cpumask_copy(doms, top_cpuset.cpus_allowed);
570 571 572

		ndoms = 1;
		goto done;
Paul Jackson's avatar
Paul Jackson committed
573 574 575 576 577 578 579
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

580 581
	list_add(&top_cpuset.stack_list, &q);
	while (!list_empty(&q)) {
Paul Jackson's avatar
Paul Jackson committed
582 583
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
584

585 586 587
		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

588
		if (cpumask_empty(cp->cpus_allowed))
589 590
			continue;

591 592 593 594 595 596 597
		/*
		 * All child cpusets contain a subset of the parent's cpus, so
		 * just skip them, and then we call update_domain_attr_tree()
		 * to calc relax_domain_level of the corresponding sched
		 * domain.
		 */
		if (is_sched_load_balance(cp)) {
Paul Jackson's avatar
Paul Jackson committed
598
			csa[csn++] = cp;
599 600
			continue;
		}
601

Paul Jackson's avatar
Paul Jackson committed
602 603
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
604
			list_add_tail(&child->stack_list, &q);
Paul Jackson's avatar
Paul Jackson committed
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

635 636 637 638
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
639
	doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
640
	if (!doms)
641 642 643 644 645 646
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
647
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
Paul Jackson's avatar
Paul Jackson committed
648 649 650

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
651
		struct cpumask *dp;
Paul Jackson's avatar
Paul Jackson committed
652 653
		int apn = a->pn;

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

		dp = doms + nslot;

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
Paul Jackson's avatar
Paul Jackson committed
670
			}
671 672
			continue;
		}
Paul Jackson's avatar
Paul Jackson committed
673

674
		cpumask_clear(dp);
675 676 677 678 679 680
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
681
				cpumask_or(dp, dp, b->cpus_allowed);
682 683 684 685 686
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
Paul Jackson's avatar
Paul Jackson committed
687 688
			}
		}
689
		nslot++;
Paul Jackson's avatar
Paul Jackson committed
690 691 692
	}
	BUG_ON(nslot != ndoms);

693 694 695
done:
	kfree(csa);

696 697 698 699 700 701 702
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
 * Call with neither cgroup_mutex held nor within get_online_cpus().
 * Takes both cgroup_mutex and get_online_cpus().
 *
 * Cannot be directly called from cpuset code handling changes
 * to the cpuset pseudo-filesystem, because it cannot be called
 * from code that already holds cgroup_mutex.
 */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
	struct sched_domain_attr *attr;
721
	struct cpumask *doms;
722 723
	int ndoms;

724
	get_online_cpus();
725 726 727 728 729 730 731 732 733

	/* Generate domain masks and attrs */
	cgroup_lock();
	ndoms = generate_sched_domains(&doms, &attr);
	cgroup_unlock();

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);

734
	put_online_cpus();
735
}
736 737 738 739 740 741 742 743 744 745 746 747
#else /* !CONFIG_SMP */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
}

static int generate_sched_domains(struct cpumask **domains,
			struct sched_domain_attr **attributes)
{
	*domains = NULL;
	return 1;
}
#endif /* CONFIG_SMP */
Paul Jackson's avatar
Paul Jackson committed
748

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);

/*
 * Rebuild scheduler domains, asynchronously via workqueue.
 *
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
 *
 * The rebuild_sched_domains() and partition_sched_domains()
 * routines must nest cgroup_lock() inside get_online_cpus(),
 * but such cpuset changes as these must nest that locking the
 * other way, holding cgroup_lock() for much of the code.
 *
 * So in order to avoid an ABBA deadlock, the cpuset code handling
 * these user changes delegates the actual sched domain rebuilding
 * to a separate workqueue thread, which ends up processing the
 * above do_rebuild_sched_domains() function.
 */
static void async_rebuild_sched_domains(void)
{
772
	queue_work(cpuset_wq, &rebuild_sched_domains_work);
773 774 775 776 777 778 779 780 781 782 783 784 785 786
}

/*
 * Accomplishes the same scheduler domain rebuild as the above
 * async_rebuild_sched_domains(), however it directly calls the
 * rebuild routine synchronously rather than calling it via an
 * asynchronous work thread.
 *
 * This can only be called from code that is not holding
 * cgroup_mutex (not nested in a cgroup_lock() call.)
 */
void rebuild_sched_domains(void)
{
	do_rebuild_sched_domains(NULL);
Paul Jackson's avatar
Paul Jackson committed
787 788
}

789 790 791 792 793
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
794
 * Call with cgroup_mutex held.  May take callback_mutex during call.
795 796 797
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
798
 */
799 800
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
801
{
802
	return !cpumask_equal(&tsk->cpus_allowed,
803 804
			(cgroup_cs(scan->cg))->cpus_allowed);
}
805

806 807 808 809 810 811 812 813 814 815 816
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
817 818
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
819
{
820
	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
821 822
}

823 824 825
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
826
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
827 828 829 830 831 832
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
833 834
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
835
 */
836
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
837 838 839 840 841 842
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
843 844
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
845 846
}

847 848 849 850 851
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
852 853
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
Linus Torvalds's avatar
Linus Torvalds committed
854
{
855
	struct ptr_heap heap;
856 857
	int retval;
	int is_load_balanced;
Linus Torvalds's avatar
Linus Torvalds committed
858

859 860 861 862
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

863
	/*
864
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
865 866 867
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
868
	 */
869
	if (!*buf) {
870
		cpumask_clear(trialcs->cpus_allowed);
871
	} else {
872
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
873 874
		if (retval < 0)
			return retval;
875

876
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
877
			return -EINVAL;
878
	}
879
	retval = validate_change(cs, trialcs);
880 881
	if (retval < 0)
		return retval;
Paul Jackson's avatar
Paul Jackson committed
882

Paul Menage's avatar
Paul Menage committed
883
	/* Nothing to do if the cpus didn't change */
884
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
Paul Menage's avatar
Paul Menage committed
885
		return 0;
886

887 888 889 890
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

891
	is_load_balanced = is_sched_load_balance(trialcs);
Paul Jackson's avatar
Paul Jackson committed
892

893
	mutex_lock(&callback_mutex);
894
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
895
	mutex_unlock(&callback_mutex);
Paul Jackson's avatar
Paul Jackson committed
896

Paul Menage's avatar
Paul Menage committed
897 898
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
899
	 * that need an update.
Paul Menage's avatar
Paul Menage committed
900
	 */
901 902 903
	update_tasks_cpumask(cs, &heap);

	heap_free(&heap);
904

Paul Menage's avatar
Paul Menage committed
905
	if (is_load_balanced)
906
		async_rebuild_sched_domains();
907
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
908 909
}

910 911 912 913 914 915 916 917
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
918
 *    Call holding cgroup_mutex, so current's cpuset won't change
919
 *    during this call, as manage_mutex holds off any cpuset_attach()
920 921
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
922
 *    our task's cpuset.
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

942
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
943 944
}

945
/*
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 *
 * Called with task's alloc_lock held
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, &tsk->mems_allowed);
	mpol_rebind_task(tsk, newmems);
	tsk->mems_allowed = *newmems;
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
 * memory_migrate flag is set. Called with cgroup_mutex held.
969 970 971 972 973 974 975 976
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
	struct mm_struct *mm;
	struct cpuset *cs;
	int migrate;
	const nodemask_t *oldmem = scan->data;
977 978 979 980 981 982 983 984
	nodemask_t newmems;

	cs = cgroup_cs(scan->cg);
	guarantee_online_mems(cs, &newmems);

	task_lock(p);
	cpuset_change_task_nodemask(p, &newmems);
	task_unlock(p);
985 986 987 988 989 990 991 992 993 994 995 996 997

	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
	mmput(mm);
}

998 999
static void *cpuset_being_rebound;

1000 1001 1002 1003
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
1004
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1005 1006
 *
 * Called with cgroup_mutex held
1007 1008
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1009
 */
1010 1011
static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
				 struct ptr_heap *heap)
Linus Torvalds's avatar
Linus Torvalds committed
1012
{
1013
	struct cgroup_scanner scan;
1014

1015
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1016

1017 1018 1019
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1020
	scan.heap = heap;
1021
	scan.data = (nodemask_t *)oldmem;
1022 1023

	/*
1024 1025 1026 1027 1028 1029
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
	 * the global cgroup_mutex, we know that no other rebind effort
	 * will be contending for the global variable cpuset_being_rebound.
1030
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1031
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1032
	 */
1033
	cgroup_scan_tasks(&scan);
1034

1035
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1036
	cpuset_being_rebound = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1037 1038
}

1039 1040 1041
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1042 1043 1044 1045
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1046 1047 1048 1049 1050 1051
 *
 * Call with cgroup_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1052 1053
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1054 1055 1056
{
	nodemask_t oldmem;
	int retval;
1057
	struct ptr_heap heap;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
	if (cs == &top_cpuset)
		return -EACCES;

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1073
		nodes_clear(trialcs->mems_allowed);
1074
	} else {
1075
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1076 1077 1078
		if (retval < 0)
			goto done;

1079
		if (!nodes_subset(trialcs->mems_allowed,
1080 1081 1082 1083
				node_states[N_HIGH_MEMORY]))
			return -EINVAL;
	}
	oldmem = cs->mems_allowed;
1084
	if (nodes_equal(oldmem, trialcs->mems_allowed)) {
1085 1086 1087
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1088
	retval = validate_change(cs, trialcs);
1089 1090 1091
	if (retval < 0)
		goto done;

1092 1093 1094 1095
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1096
	mutex_lock(&callback_mutex);
1097
	cs->mems_allowed = trialcs->mems_allowed;
1098 1099
	mutex_unlock(&callback_mutex);

1100 1101 1102
	update_tasks_nodemask(cs, &oldmem, &heap);

	heap_free(&heap);
1103 1104 1105 1106
done:
	return retval;
}

1107 1108 1109 1110 1111
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1112
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1113
{
1114
#ifdef CONFIG_SMP
1115 1116
	if (val < -1 || val >= SD_LV_MAX)
		return -EINVAL;
1117
#endif
1118 1119 1120

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1121 1122
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1123
			async_rebuild_sched_domains();
1124 1125 1126 1127 1128
	}

	return 0;
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

Linus Torvalds's avatar
Linus Torvalds committed
1169 1170
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1171 1172 1173
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1174
 *
1175
 * Call with cgroup_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
1176 1177
 */

1178 1179
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
Linus Torvalds's avatar
Linus Torvalds committed
1180
{
1181
	struct cpuset *trialcs;
1182
	int balance_flag_changed;
1183 1184 1185
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1186

1187 1188 1189 1190
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

Linus Torvalds's avatar
Linus Torvalds committed
1191
	if (turning_on)
1192
		set_bit(bit, &trialcs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
1193
	else
1194
		clear_bit(bit, &trialcs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
1195

1196
	err = validate_change(cs, trialcs);
1197
	if (err < 0)
1198
		goto out;
Paul Jackson's avatar
Paul Jackson committed
1199

1200 1201 1202 1203
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

Paul Jackson's avatar
Paul Jackson committed
1204
	balance_flag_changed = (is_sched_load_balance(cs) !=