cpuset.c 74.3 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
Paul Jackson's avatar
Paul Jackson committed
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
Linus Torvalds's avatar
Linus Torvalds committed
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
Linus Torvalds's avatar
Linus Torvalds committed
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
Linus Torvalds's avatar
Linus Torvalds committed
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
Linus Torvalds's avatar
Linus Torvalds committed
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
Linus Torvalds's avatar
Linus Torvalds committed
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
Linus Torvalds's avatar
Linus Torvalds committed
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
Linus Torvalds's avatar
Linus Torvalds committed
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
Arun Sharma's avatar
Arun Sharma committed
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
Linus Torvalds's avatar
Linus Torvalds committed
62

63 64 65 66 67 68 69 70
/*
 * Workqueue for cpuset related tasks.
 *
 * Using kevent workqueue may cause deadlock when memory_migrate
 * is set. So we create a separate workqueue thread for cpuset.
 */
static struct workqueue_struct *cpuset_wq;

71 72 73 74 75
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
76
int number_of_cpusets __read_mostly;
77

78
/* Forward declare cgroup structures */
79 80 81
struct cgroup_subsys cpuset_subsys;
struct cpuset;

82 83 84 85 86 87 88 89 90
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

Linus Torvalds's avatar
Linus Torvalds committed
91
struct cpuset {
92 93
	struct cgroup_subsys_state css;

Linus Torvalds's avatar
Linus Torvalds committed
94
	unsigned long flags;		/* "unsigned long" so bitops work */
95
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
Linus Torvalds's avatar
Linus Torvalds committed
96 97 98 99
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

100
	struct fmeter fmeter;		/* memory_pressure filter */
Paul Jackson's avatar
Paul Jackson committed
101 102 103

	/* partition number for rebuild_sched_domains() */
	int pn;
104

105 106 107
	/* for custom sched domain */
	int relax_domain_level;

108
	/* used for walking a cpuset hierarchy */
109
	struct list_head stack_list;
Linus Torvalds's avatar
Linus Torvalds committed
110 111
};

112 113 114 115 116 117 118 119 120 121 122 123 124 125
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


Linus Torvalds's avatar
Linus Torvalds committed
139 140 141 142
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
143
	CS_MEM_HARDWALL,
144
	CS_MEMORY_MIGRATE,
Paul Jackson's avatar
Paul Jackson committed
145
	CS_SCHED_LOAD_BALANCE,
146 147
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
148 149 150 151 152
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
153
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
154 155 156 157
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
158
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
159 160
}

161 162 163 164 165
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

Paul Jackson's avatar
Paul Jackson committed
166 167 168 169 170
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

171 172
static inline int is_memory_migrate(const struct cpuset *cs)
{
173
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
174 175
}

176 177 178 179 180 181 182 183 184 185
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

Linus Torvalds's avatar
Linus Torvalds committed
186 187 188 189 190
static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
};

/*
191 192 193 194 195 196 197
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
198
 *
199
 * A task must hold both mutexes to modify cpusets.  If a task
200
 * holds cgroup_mutex, then it blocks others wanting that mutex,
201
 * ensuring that it is the only task able to also acquire callback_mutex
202 203
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
204
 * also allocate memory while just holding cgroup_mutex.  While it is
205
 * performing these checks, various callback routines can briefly
206 207
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
208 209
 *
 * Calls to the kernel memory allocator can not be made while holding
210
 * callback_mutex, as that would risk double tripping on callback_mutex
211 212 213
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
214
 * If a task is only holding callback_mutex, then it has read-only
215 216
 * access to cpusets.
 *
217 218 219
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
220
 *
221
 * The cpuset_common_file_read() handlers only hold callback_mutex across
222 223 224
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
225 226
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
Linus Torvalds's avatar
Linus Torvalds committed
227 228
 */

229
static DEFINE_MUTEX(callback_mutex);
230

231 232 233 234 235 236 237 238 239 240 241
/*
 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 * buffers.  They are statically allocated to prevent using excess stack
 * when calling cpuset_print_task_mems_allowed().
 */
#define CPUSET_NAME_LEN		(128)
#define	CPUSET_NODELIST_LEN	(256)
static char cpuset_name[CPUSET_NAME_LEN];
static char cpuset_nodelist[CPUSET_NODELIST_LEN];
static DEFINE_SPINLOCK(cpuset_buffer_lock);

242 243
/*
 * This is ugly, but preserves the userspace API for existing cpuset
244
 * users. If someone tries to mount the "cpuset" filesystem, we
245 246
 * silently switch it to mount "cgroup" instead
 */
Al Viro's avatar
Al Viro committed
247 248
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
Linus Torvalds's avatar
Linus Torvalds committed
249
{
250
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
Al Viro's avatar
Al Viro committed
251
	struct dentry *ret = ERR_PTR(-ENODEV);
252 253 254 255
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
Al Viro's avatar
Al Viro committed
256 257
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
258 259 260
		put_filesystem(cgroup_fs);
	}
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
261 262 263 264
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
Al Viro's avatar
Al Viro committed
265
	.mount = cpuset_mount,
Linus Torvalds's avatar
Linus Torvalds committed
266 267 268
};

/*
269
 * Return in pmask the portion of a cpusets's cpus_allowed that
Linus Torvalds's avatar
Linus Torvalds committed
270 271 272 273 274 275 276 277 278
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
279
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
280 281
 */

282 283
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
Linus Torvalds's avatar
Linus Torvalds committed
284
{
285
	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
Linus Torvalds's avatar
Linus Torvalds committed
286 287
		cs = cs->parent;
	if (cs)
288
		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
Linus Torvalds's avatar
Linus Torvalds committed
289
	else
290 291
		cpumask_copy(pmask, cpu_online_mask);
	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
Linus Torvalds's avatar
Linus Torvalds committed
292 293 294 295
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
296 297 298 299
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
300 301
 *
 * One way or another, we guarantee to return some non-empty subset
302
 * of node_states[N_HIGH_MEMORY].
Linus Torvalds's avatar
Linus Torvalds committed
303
 *
304
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
305 306 307 308
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
309 310
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
Linus Torvalds's avatar
Linus Torvalds committed
311 312
		cs = cs->parent;
	if (cs)
313 314
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
Linus Torvalds's avatar
Linus Torvalds committed
315
	else
316 317
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
Linus Torvalds's avatar
Linus Torvalds committed
318 319
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
 * Called with callback_mutex/cgroup_mutex held
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

Linus Torvalds's avatar
Linus Torvalds committed
338 339 340 341 342
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
343
 * are only set if the other's are set.  Call holding cgroup_mutex.
Linus Torvalds's avatar
Linus Torvalds committed
344 345 346 347
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
348
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
Linus Torvalds's avatar
Linus Torvalds committed
349 350 351 352 353
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

354 355 356 357 358 359
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
360 361 362 363 364 365 366 367 368 369 370 371 372
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
373 374 375 376 377 378 379 380
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
381
	free_cpumask_var(trial->cpus_allowed);
382 383 384
	kfree(trial);
}

Linus Torvalds's avatar
Linus Torvalds committed
385 386 387 388 389 390 391
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
392
 * cgroup_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
393 394 395 396 397 398 399 400 401 402 403 404 405 406
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
407
	struct cgroup *cont;
Linus Torvalds's avatar
Linus Torvalds committed
408 409 410
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
411 412
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
Linus Torvalds's avatar
Linus Torvalds committed
413 414 415 416
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
417
	if (cur == &top_cpuset)
Linus Torvalds's avatar
Linus Torvalds committed
418 419
		return 0;

420 421
	par = cur->parent;

Linus Torvalds's avatar
Linus Torvalds committed
422 423 424 425
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

426 427 428 429
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
430 431
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
Linus Torvalds's avatar
Linus Torvalds committed
432 433
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
434
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
Linus Torvalds's avatar
Linus Torvalds committed
435 436 437 438 439 440 441
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

442 443
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
444
		if (cpumask_empty(trial->cpus_allowed) ||
445 446 447 448 449
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

Linus Torvalds's avatar
Linus Torvalds committed
450 451 452
	return 0;
}

453
#ifdef CONFIG_SMP
Paul Jackson's avatar
Paul Jackson committed
454
/*
455
 * Helper routine for generate_sched_domains().
Paul Jackson's avatar
Paul Jackson committed
456 457 458 459
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
460
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
Paul Jackson's avatar
Paul Jackson committed
461 462
}

463 464 465 466 467 468 469 470
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484
static void
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
{
	LIST_HEAD(q);

	list_add(&c->stack_list, &q);
	while (!list_empty(&q)) {
		struct cpuset *cp;
		struct cgroup *cont;
		struct cpuset *child;

		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

485
		if (cpumask_empty(cp->cpus_allowed))
486 487 488 489 490 491 492 493 494 495 496 497
			continue;

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);

		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &q);
		}
	}
}

Paul Jackson's avatar
Paul Jackson committed
498
/*
499 500 501 502 503 504 505 506 507
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
Paul Jackson's avatar
Paul Jackson committed
508
 *
509
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
Paul Jackson's avatar
Paul Jackson committed
510 511 512 513 514 515 516
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
517
 * Must be called with cgroup_lock held.
Paul Jackson's avatar
Paul Jackson committed
518 519
 *
 * The three key local variables below are:
520
 *    q  - a linked-list queue of cpuset pointers, used to implement a
Paul Jackson's avatar
Paul Jackson committed
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
552
static int generate_sched_domains(cpumask_var_t **domains,
553
			struct sched_domain_attr **attributes)
Paul Jackson's avatar
Paul Jackson committed
554
{
555
	LIST_HEAD(q);		/* queue of cpusets to be scanned */
Paul Jackson's avatar
Paul Jackson committed
556 557 558 559
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
560
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
561
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
562
	int ndoms = 0;		/* number of sched domains in result */
563
	int nslot;		/* next empty doms[] struct cpumask slot */
Paul Jackson's avatar
Paul Jackson committed
564 565

	doms = NULL;
566
	dattr = NULL;
567
	csa = NULL;
Paul Jackson's avatar
Paul Jackson committed
568 569 570

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
571 572
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
Paul Jackson's avatar
Paul Jackson committed
573
		if (!doms)
574 575
			goto done;

576 577 578
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
579
			update_domain_attr_tree(dattr, &top_cpuset);
580
		}
581
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
582 583

		goto done;
Paul Jackson's avatar
Paul Jackson committed
584 585 586 587 588 589 590
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

591 592
	list_add(&top_cpuset.stack_list, &q);
	while (!list_empty(&q)) {
Paul Jackson's avatar
Paul Jackson committed
593 594
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
595

596 597 598
		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

599
		if (cpumask_empty(cp->cpus_allowed))
600 601
			continue;

602 603 604 605 606 607 608
		/*
		 * All child cpusets contain a subset of the parent's cpus, so
		 * just skip them, and then we call update_domain_attr_tree()
		 * to calc relax_domain_level of the corresponding sched
		 * domain.
		 */
		if (is_sched_load_balance(cp)) {
Paul Jackson's avatar
Paul Jackson committed
609
			csa[csn++] = cp;
610 611
			continue;
		}
612

Paul Jackson's avatar
Paul Jackson committed
613 614
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
615
			list_add_tail(&child->stack_list, &q);
Paul Jackson's avatar
Paul Jackson committed
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

646 647 648 649
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
650
	doms = alloc_sched_domains(ndoms);
651
	if (!doms)
652 653 654 655 656 657
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
658
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
Paul Jackson's avatar
Paul Jackson committed
659 660 661

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
662
		struct cpumask *dp;
Paul Jackson's avatar
Paul Jackson committed
663 664
		int apn = a->pn;

665 666 667 668 669
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

670
		dp = doms[nslot];
671 672 673 674 675 676 677 678 679 680

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
Paul Jackson's avatar
Paul Jackson committed
681
			}
682 683
			continue;
		}
Paul Jackson's avatar
Paul Jackson committed
684

685
		cpumask_clear(dp);
686 687 688 689 690 691
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
692
				cpumask_or(dp, dp, b->cpus_allowed);
693 694 695 696 697
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
Paul Jackson's avatar
Paul Jackson committed
698 699
			}
		}
700
		nslot++;
Paul Jackson's avatar
Paul Jackson committed
701 702 703
	}
	BUG_ON(nslot != ndoms);

704 705 706
done:
	kfree(csa);

707 708 709 710 711 712 713
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
 * Call with neither cgroup_mutex held nor within get_online_cpus().
 * Takes both cgroup_mutex and get_online_cpus().
 *
 * Cannot be directly called from cpuset code handling changes
 * to the cpuset pseudo-filesystem, because it cannot be called
 * from code that already holds cgroup_mutex.
 */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
	struct sched_domain_attr *attr;
732
	cpumask_var_t *doms;
733 734
	int ndoms;

735
	get_online_cpus();
736 737 738 739 740 741 742 743 744

	/* Generate domain masks and attrs */
	cgroup_lock();
	ndoms = generate_sched_domains(&doms, &attr);
	cgroup_unlock();

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);

745
	put_online_cpus();
746
}
747 748 749 750 751
#else /* !CONFIG_SMP */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
}

752
static int generate_sched_domains(cpumask_var_t **domains,
753 754 755 756 757 758
			struct sched_domain_attr **attributes)
{
	*domains = NULL;
	return 1;
}
#endif /* CONFIG_SMP */
Paul Jackson's avatar
Paul Jackson committed
759

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);

/*
 * Rebuild scheduler domains, asynchronously via workqueue.
 *
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
 *
 * The rebuild_sched_domains() and partition_sched_domains()
 * routines must nest cgroup_lock() inside get_online_cpus(),
 * but such cpuset changes as these must nest that locking the
 * other way, holding cgroup_lock() for much of the code.
 *
 * So in order to avoid an ABBA deadlock, the cpuset code handling
 * these user changes delegates the actual sched domain rebuilding
 * to a separate workqueue thread, which ends up processing the
 * above do_rebuild_sched_domains() function.
 */
static void async_rebuild_sched_domains(void)
{
783
	queue_work(cpuset_wq, &rebuild_sched_domains_work);
784 785 786 787 788 789 790 791 792 793 794 795 796 797
}

/*
 * Accomplishes the same scheduler domain rebuild as the above
 * async_rebuild_sched_domains(), however it directly calls the
 * rebuild routine synchronously rather than calling it via an
 * asynchronous work thread.
 *
 * This can only be called from code that is not holding
 * cgroup_mutex (not nested in a cgroup_lock() call.)
 */
void rebuild_sched_domains(void)
{
	do_rebuild_sched_domains(NULL);
Paul Jackson's avatar
Paul Jackson committed
798 799
}

800 801 802 803 804
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
805
 * Call with cgroup_mutex held.  May take callback_mutex during call.
806 807 808
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
809
 */
810 811
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
812
{
813
	return !cpumask_equal(&tsk->cpus_allowed,
814 815
			(cgroup_cs(scan->cg))->cpus_allowed);
}
816

817 818 819 820 821 822 823 824 825 826 827
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
828 829
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
830
{
831
	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
832 833
}

834 835 836
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
837
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
838 839 840 841 842 843
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
844 845
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
846
 */
847
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
848 849 850 851 852 853
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
854 855
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
856 857
}

858 859 860 861 862
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
863 864
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
Linus Torvalds's avatar
Linus Torvalds committed
865
{
866
	struct ptr_heap heap;
867 868
	int retval;
	int is_load_balanced;
Linus Torvalds's avatar
Linus Torvalds committed
869

870 871 872 873
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

874
	/*
875
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
876 877 878
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
879
	 */
880
	if (!*buf) {
881
		cpumask_clear(trialcs->cpus_allowed);
882
	} else {
883
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
884 885
		if (retval < 0)
			return retval;
886

887
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
888
			return -EINVAL;
889
	}
890
	retval = validate_change(cs, trialcs);
891 892
	if (retval < 0)
		return retval;
Paul Jackson's avatar
Paul Jackson committed
893

Paul Menage's avatar
Paul Menage committed
894
	/* Nothing to do if the cpus didn't change */
895
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
Paul Menage's avatar
Paul Menage committed
896
		return 0;
897

898 899 900 901
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

902
	is_load_balanced = is_sched_load_balance(trialcs);
Paul Jackson's avatar
Paul Jackson committed
903

904
	mutex_lock(&callback_mutex);
905
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
906
	mutex_unlock(&callback_mutex);
Paul Jackson's avatar
Paul Jackson committed
907

Paul Menage's avatar
Paul Menage committed
908 909
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
910
	 * that need an update.
Paul Menage's avatar
Paul Menage committed
911
	 */
912 913 914
	update_tasks_cpumask(cs, &heap);

	heap_free(&heap);
915

Paul Menage's avatar
Paul Menage committed
916
	if (is_load_balanced)
917
		async_rebuild_sched_domains();
918
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
919 920
}

921 922 923 924 925 926 927 928
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
929
 *    Call holding cgroup_mutex, so current's cpuset won't change
930
 *    during this call, as manage_mutex holds off any cpuset_attach()
931 932
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
933
 *    our task's cpuset.
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

950
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
951 952
}

953
/*
954 955 956 957 958 959 960 961 962 963 964
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
965
	bool need_loop;
966

967 968 969 970 971 972 973 974 975 976 977
repeat:
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
978 979 980 981 982 983 984 985
	/*
	 * Determine if a loop is necessary if another thread is doing
	 * get_mems_allowed().  If at least one node remains unchanged and
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
986
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);

	/*
	 * ensure checking ->mems_allowed_change_disable after setting all new
	 * allowed nodes.
	 *
	 * the read-side task can see an nodemask with new allowed nodes and
	 * old allowed nodes. and if it allocates page when cpuset clears newly
	 * disallowed ones continuous, it can see the new allowed bits.
	 *
	 * And if setting all new allowed nodes is after the checking, setting
	 * all new allowed nodes and clearing newly disallowed ones will be done
	 * continuous, and the read-side task may find no node to alloc page.
	 */
	smp_mb();

	/*
	 * Allocation of memory is very fast, we needn't sleep when waiting
1005
	 * for the read-side.
1006
	 */
1007
	while (need_loop && ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		task_unlock(tsk);
		if (!task_curr(tsk))
			yield();
		goto repeat;
	}

	/*
	 * ensure checking ->mems_allowed_change_disable before clearing all new
	 * disallowed nodes.
	 *
	 * if clearing newly disallowed bits before the checking, the read-side
	 * task may find no node to alloc page.
	 */
	smp_mb();

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1024
	tsk->mems_allowed = *newmems;
1025
	task_unlock(tsk);
1026 1027 1028 1029 1030 1031
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
 * memory_migrate flag is set. Called with cgroup_mutex held.
1032 1033 1034 1035 1036 1037 1038 1039
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
	struct mm_struct *mm;
	struct cpuset *cs;
	int migrate;
	const nodemask_t *oldmem = scan->data;
1040
	static nodemask_t newmems;	/* protected by cgroup_mutex */
1041 1042

	cs = cgroup_cs(scan->cg);
1043
	guarantee_online_mems(cs, &newmems);
1044

1045
	cpuset_change_task_nodemask(p, &newmems);
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
	mmput(mm);
}

1059 1060
static void *cpuset_being_rebound;

1061 1062 1063 1064
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
1065
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1066 1067
 *
 * Called with cgroup_mutex held
1068 1069
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1070
 */
1071 1072
static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
				 struct ptr_heap *heap)
Linus Torvalds's avatar
Linus Torvalds committed
1073
{
1074
	struct cgroup_scanner scan;
1075

1076
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1077

1078 1079 1080
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1081
	scan.heap = heap;
1082
	scan.data = (nodemask_t *)oldmem;
1083 1084

	/*
1085 1086 1087 1088 1089 1090
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
	 * the global cgroup_mutex, we know that no other rebind effort
	 * will be contending for the global variable cpuset_being_rebound.
1091
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1092
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1093
	 */
1094
	cgroup_scan_tasks(&scan);
1095

1096
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1097
	cpuset_being_rebound = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1098 1099
}

1100 1101 1102
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1103 1104 1105 1106
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1107 1108 1109 1110 1111 1112
 *
 * Call with cgroup_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1113 1114
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1115
{
1116
	NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1117
	int retval;
1118
	struct ptr_heap heap;
1119

1120 1121 1122
	if (!oldmem)
		return -ENOMEM;

1123 1124 1125 1126
	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
1127 1128 1129 1130
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1131 1132 1133 1134 1135 1136 1137 1138

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1139
		nodes_clear(trialcs->mems_allowed);
1140
	} else {
1141
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1142 1143 1144
		if (retval < 0)
			goto done;

1145
		if (!nodes_subset(trialcs->mems_allowed,
1146 1147 1148 1149
				node_states[N_HIGH_MEMORY])) {
			retval =  -EINVAL;
			goto done;
		}
1150
	}
1151 1152
	*oldmem = cs->mems_allowed;
	if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1153 1154 1155
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1156
	retval = validate_change(cs, trialcs);
1157 1158 1159
	if (retval < 0)
		goto done;

1160 1161 1162 1163
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1164
	mutex_lock(&callback_mutex);
1165
	cs->mems_allowed = trialcs->mems_allowed;
1166 1167
	mutex_unlock(&callback_mutex);

1168
	update_tasks_nodemask(cs, oldmem, &heap);
1169 1170

	heap_free(&heap);
1171
done:
1172
	NODEMASK_FREE(oldmem);