cfq-iosched.c 104 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
Linus Torvalds's avatar
Linus Torvalds committed
8 9
 */
#include <linux/module.h>
10
#include <linux/slab.h>
Al Viro's avatar
Al Viro committed
11 12
#include <linux/blkdev.h>
#include <linux/elevator.h>
Randy Dunlap's avatar
Randy Dunlap committed
13
#include <linux/jiffies.h>
Linus Torvalds's avatar
Linus Torvalds committed
14
#include <linux/rbtree.h>
15
#include <linux/ioprio.h>
16
#include <linux/blktrace_api.h>
17
#include "cfq.h"
Linus Torvalds's avatar
Linus Torvalds committed
18 19 20 21

/*
 * tunables
 */
22
/* max queue in one round of service */
Shaohua Li's avatar
Shaohua Li committed
23
static const int cfq_quantum = 8;
24
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 26 27 28
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
29
static const int cfq_slice_sync = HZ / 10;
Jens Axboe's avatar
Jens Axboe committed
30
static int cfq_slice_async = HZ / 25;
31
static const int cfq_slice_async_rq = 2;
32
static int cfq_slice_idle = HZ / 125;
33
static int cfq_group_idle = HZ / 125;
34 35
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
36

37
/*
38
 * offset from end of service tree
39
 */
40
#define CFQ_IDLE_DELAY		(HZ / 5)
41 42 43 44 45 46

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

47
#define CFQ_SLICE_SCALE		(5)
48
#define CFQ_HW_QUEUE_MIN	(5)
49
#define CFQ_SERVICE_SHIFT       12
50

51
#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
52
#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
53
#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
54
#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
55

56 57
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
58
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
59
#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elevator_private3)
Linus Torvalds's avatar
Linus Torvalds committed
60

61 62
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
Linus Torvalds's avatar
Linus Torvalds committed
63

64
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65
static struct completion *ioc_gone;
66
static DEFINE_SPINLOCK(ioc_gone_lock);
67

68 69 70
static DEFINE_SPINLOCK(cic_index_lock);
static DEFINE_IDA(cic_index_ida);

71 72 73 74
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

75
#define sample_valid(samples)	((samples) > 80)
76
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
77

78 79 80 81 82 83 84 85 86
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
87
	unsigned count;
88
	unsigned total_weight;
89
	u64 min_vdisktime;
90
	struct rb_node *active;
91
};
92 93
#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_vdisktime = 0, }
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

124 125
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
126
	unsigned int allocated_slice;
127
	unsigned int slice_dispatch;
128 129
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
130 131 132 133 134 135 136 137 138 139 140 141
	unsigned long slice_end;
	long slice_resid;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

142 143
	pid_t pid;

144
	u32 seek_history;
145 146
	sector_t last_request_pos;

147
	struct cfq_rb_root *service_tree;
Jeff Moyer's avatar
Jeff Moyer committed
148
	struct cfq_queue *new_cfqq;
149
	struct cfq_group *cfqg;
150
	struct cfq_group *orig_cfqg;
151 152
	/* Number of sectors dispatched from queue in single dispatch round */
	unsigned long nr_sectors;
153 154
};

155
/*
156
 * First index in the service_trees.
157 158 159 160
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
161 162
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
163 164
};

165 166 167 168 169 170 171 172 173
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

174 175
/* This is per cgroup per device grouping structure */
struct cfq_group {
176 177 178 179 180
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
181
	unsigned int weight;
182 183 184 185 186
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

187 188
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
189 190 191 192 193 194
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
195 196 197 198

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
199 200 201
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
202
	atomic_t ref;
203
#endif
204 205
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;
206
};
207

208 209 210
/*
 * Per block device queue structure
 */
Linus Torvalds's avatar
Linus Torvalds committed
211
struct cfq_data {
212
	struct request_queue *queue;
213 214
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
215
	struct cfq_group root_group;
216

217 218
	/*
	 * The priority currently being served
219
	 */
220
	enum wl_prio_t serving_prio;
221 222
	enum wl_type_t serving_type;
	unsigned long workload_expires;
223
	struct cfq_group *serving_group;
224
	bool noidle_tree_requires_idle;
225 226 227 228 229 230 231 232

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

233 234
	unsigned int busy_queues;

235 236
	int rq_in_driver;
	int rq_in_flight[2];
237 238 239 240 241

	/*
	 * queue-depth detection
	 */
	int rq_queued;
242
	int hw_tag;
243 244 245 246 247 248 249 250
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
Linus Torvalds's avatar
Linus Torvalds committed
251

252 253 254 255
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
256
	struct work_struct unplug_work;
Linus Torvalds's avatar
Linus Torvalds committed
257

258 259 260
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

261 262 263 264 265
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
266

Jens Axboe's avatar
Jens Axboe committed
267
	sector_t last_position;
Linus Torvalds's avatar
Linus Torvalds committed
268 269 270 271 272

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
273
	unsigned int cfq_fifo_expire[2];
Linus Torvalds's avatar
Linus Torvalds committed
274 275
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
276 277 278
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
279
	unsigned int cfq_group_idle;
280
	unsigned int cfq_latency;
281
	unsigned int cfq_group_isolation;
282

283
	unsigned int cic_index;
284
	struct list_head cic_list;
Linus Torvalds's avatar
Linus Torvalds committed
285

286 287 288 289
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
290

291
	unsigned long last_delayed_sync;
292 293 294

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
295
	struct rcu_head rcu;
Linus Torvalds's avatar
Linus Torvalds committed
296 297
};

298 299
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

300 301
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
302
					    enum wl_type_t type)
303
{
304 305 306
	if (!cfqg)
		return NULL;

307
	if (prio == IDLE_WORKLOAD)
308
		return &cfqg->service_tree_idle;
309

310
	return &cfqg->service_trees[prio][type];
311 312
}

Jens Axboe's avatar
Jens Axboe committed
313
enum cfqq_state_flags {
314 315
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
316
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
317 318 319 320
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
321
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
322
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
323
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
324
	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
325
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
326
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
Jens Axboe's avatar
Jens Axboe committed
327 328 329 330 331
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
332
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
Jens Axboe's avatar
Jens Axboe committed
333 334 335
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
336
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
Jens Axboe's avatar
Jens Axboe committed
337 338 339
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
340
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
Jens Axboe's avatar
Jens Axboe committed
341 342 343 344
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
345
CFQ_CFQQ_FNS(must_dispatch);
Jens Axboe's avatar
Jens Axboe committed
346 347 348 349
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
350
CFQ_CFQQ_FNS(slice_new);
351
CFQ_CFQQ_FNS(sync);
352
CFQ_CFQQ_FNS(coop);
353
CFQ_CFQQ_FNS(split_coop);
354
CFQ_CFQQ_FNS(deep);
355
CFQ_CFQQ_FNS(wait_busy);
Jens Axboe's avatar
Jens Axboe committed
356 357
#undef CFQ_CFQQ_FNS

358
#ifdef CONFIG_CFQ_GROUP_IOSCHED
359 360 361 362 363 364 365 366 367 368
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
			blkg_path(&(cfqq)->cfqg->blkg), ##args);

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
				blkg_path(&(cfqg)->blkg), ##args);      \

#else
369 370
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
371 372
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
#endif
373 374 375
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

376 377 378 379 380 381 382 383 384 385 386
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static inline bool iops_mode(struct cfq_data *cfqd)
{
	/*
	 * If we are not idling on queues and it is a NCQ drive, parallel
	 * execution of requests is on and measuring time is not possible
	 * in most of the cases until and unless we drive shallower queue
	 * depths and that becomes a performance bottleneck. In such cases
	 * switch to start providing fairness in terms of number of IOs.
	 */
	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
		return true;
	else
		return false;
}

402 403 404 405 406 407 408 409 410
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

411 412 413 414 415 416 417 418 419 420

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

421 422 423
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
424 425
{
	if (wl == IDLE_WORKLOAD)
426
		return cfqg->service_tree_idle.count;
427

428 429 430
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
431 432
}

433 434 435 436 437 438 439
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

440
static void cfq_dispatch_insert(struct request_queue *, struct request *);
441
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
442
				       struct io_context *, gfp_t);
443
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
444 445 446
						struct io_context *);

static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
447
					    bool is_sync)
448
{
449
	return cic->cfqq[is_sync];
450 451 452
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
453
				struct cfq_queue *cfqq, bool is_sync)
454
{
455
	cic->cfqq[is_sync] = cfqq;
456 457
}

458
#define CIC_DEAD_KEY	1ul
459
#define CIC_DEAD_INDEX_SHIFT	1
460 461 462

static inline void *cfqd_dead_key(struct cfq_data *cfqd)
{
463
	return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
464 465 466 467 468 469 470 471 472 473 474 475
}

static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
{
	struct cfq_data *cfqd = cic->key;

	if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
		return NULL;

	return cfqd;
}

476 477 478 479
/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
480
static inline bool cfq_bio_sync(struct bio *bio)
481
{
482
	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
483
}
Linus Torvalds's avatar
Linus Torvalds committed
484

Andrew Morton's avatar
Andrew Morton committed
485 486 487 488
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
489
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
Andrew Morton's avatar
Andrew Morton committed
490
{
491 492
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
493
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
494
	}
Andrew Morton's avatar
Andrew Morton committed
495 496
}

497
static int cfq_queue_empty(struct request_queue *q)
Andrew Morton's avatar
Andrew Morton committed
498 499 500
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

501
	return !cfqd->rq_queued;
Andrew Morton's avatar
Andrew Morton committed
502 503
}

504 505 506 507 508
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
509
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
510
				 unsigned short prio)
511
{
512
	const int base_slice = cfqd->cfq_slice[sync];
513

514 515 516 517
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
518

519 520 521 522
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
523 524
}

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

570 571 572 573 574 575
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

576 577
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
578
{
579 580 581
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
582
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
583

584 585 586
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
587
		cfq_hist_divisor;
588 589 590 591 592 593 594 595 596
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
597 598
}

599 600 601
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
602 603
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
604 605 606 607 608 609
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
610 611
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
612 613 614
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
615 616 617 618 619 620 621
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
622
			slice = max(slice * group_slice / expect_latency,
623 624 625
				    low_slice);
		}
	}
626
	cfqq->slice_start = jiffies;
627
	cfqq->slice_end = jiffies + slice;
628
	cfqq->allocated_slice = slice;
629
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
630 631 632 633 634 635 636
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
637
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
638 639 640 641 642 643 644 645 646
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

Linus Torvalds's avatar
Linus Torvalds committed
647
/*
Jens Axboe's avatar
Jens Axboe committed
648
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
Linus Torvalds's avatar
Linus Torvalds committed
649
 * We choose the request that is closest to the head right now. Distance
650
 * behind the head is penalized and only allowed to a certain extent.
Linus Torvalds's avatar
Linus Torvalds committed
651
 */
Jens Axboe's avatar
Jens Axboe committed
652
static struct request *
653
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
Linus Torvalds's avatar
Linus Torvalds committed
654
{
655
	sector_t s1, s2, d1 = 0, d2 = 0;
Linus Torvalds's avatar
Linus Torvalds committed
656
	unsigned long back_max;
657 658 659
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
Linus Torvalds's avatar
Linus Torvalds committed
660

Jens Axboe's avatar
Jens Axboe committed
661 662 663 664
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
665

Jens Axboe's avatar
Jens Axboe committed
666 667 668 669
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
670
	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
671
		return rq1;
672 673
	else if ((rq2->cmd_flags & REQ_META) &&
		 !(rq1->cmd_flags & REQ_META))
674
		return rq2;
Linus Torvalds's avatar
Linus Torvalds committed
675

676 677
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
Linus Torvalds's avatar
Linus Torvalds committed
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
694
		wrap |= CFQ_RQ1_WRAP;
Linus Torvalds's avatar
Linus Torvalds committed
695 696 697 698 699 700

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
701
		wrap |= CFQ_RQ2_WRAP;
Linus Torvalds's avatar
Linus Torvalds committed
702 703

	/* Found required data */
704 705 706 707 708 709

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
Jens Axboe's avatar
Jens Axboe committed
710
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
711
		if (d1 < d2)
Jens Axboe's avatar
Jens Axboe committed
712
			return rq1;
713
		else if (d2 < d1)
Jens Axboe's avatar
Jens Axboe committed
714
			return rq2;
715 716
		else {
			if (s1 >= s2)
Jens Axboe's avatar
Jens Axboe committed
717
				return rq1;
718
			else
Jens Axboe's avatar
Jens Axboe committed
719
				return rq2;
720
		}
Linus Torvalds's avatar
Linus Torvalds committed
721

722
	case CFQ_RQ2_WRAP:
Jens Axboe's avatar
Jens Axboe committed
723
		return rq1;
724
	case CFQ_RQ1_WRAP:
Jens Axboe's avatar
Jens Axboe committed
725 726
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
727 728 729 730 731 732 733 734
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
Jens Axboe's avatar
Jens Axboe committed
735
			return rq1;
Linus Torvalds's avatar
Linus Torvalds committed
736
		else
Jens Axboe's avatar
Jens Axboe committed
737
			return rq2;
Linus Torvalds's avatar
Linus Torvalds committed
738 739 740
	}
}

741 742 743
/*
 * The below is leftmost cache rbtree addon
 */
744
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
745
{
746 747 748 749
	/* Service tree is empty */
	if (!root->count)
		return NULL;

750 751 752
	if (!root->left)
		root->left = rb_first(&root->rb);

753 754 755 756
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
757 758
}

759 760 761 762 763 764 765 766 767 768 769
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

770 771 772 773 774 775
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

776 777 778 779
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
780
	rb_erase_init(n, &root->rb);
781
	--root->count;
782 783
}

Linus Torvalds's avatar
Linus Torvalds committed
784 785 786
/*
 * would be nice to take fifo expire time into account as well
 */
Jens Axboe's avatar
Jens Axboe committed
787 788 789
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
Linus Torvalds's avatar
Linus Torvalds committed
790
{
791 792
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
Jens Axboe's avatar
Jens Axboe committed
793
	struct request *next = NULL, *prev = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
794

795
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
Linus Torvalds's avatar
Linus Torvalds committed
796 797

	if (rbprev)
Jens Axboe's avatar
Jens Axboe committed
798
		prev = rb_entry_rq(rbprev);
Linus Torvalds's avatar
Linus Torvalds committed
799

800
	if (rbnext)
Jens Axboe's avatar
Jens Axboe committed
801
		next = rb_entry_rq(rbnext);
802 803 804
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
Jens Axboe's avatar
Jens Axboe committed
805
			next = rb_entry_rq(rbnext);
806
	}
Linus Torvalds's avatar
Linus Torvalds committed
807

808
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
Linus Torvalds's avatar
Linus Torvalds committed
809 810
}

811 812
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
Linus Torvalds's avatar
Linus Torvalds committed
813
{
814 815 816
	/*
	 * just an approximation, should be ok.
	 */
817
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
818
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
819 820
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
880
	st->total_weight += cfqg->weight;
881 882 883 884 885 886 887
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

888 889 890
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

891 892
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
893

894 895 896 897
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

898
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
899
	cfqg->on_st = false;
900
	st->total_weight -= cfqg->weight;
901 902
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
903
	cfqg->saved_workload_slice = 0;
904
	cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
905 906 907 908
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
909
	unsigned int slice_used;
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
926 927
		if (slice_used > cfqq->allocated_slice)
			slice_used = cfqq->allocated_slice;
928 929 930 931 932 933
	}

	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
934
				struct cfq_queue *cfqq)
935 936
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
937
	unsigned int used_sl, charge;
938 939 940 941
	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
			- cfqg->service_tree_idle.count;

	BUG_ON(nr_sync < 0);
942
	used_sl = charge = cfq_cfqq_slice_usage(cfqq);
943

944 945 946 947
	if (iops_mode(cfqd))
		charge = cfqq->slice_dispatch;
	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
		charge = cfqq->allocated_slice;
948 949 950

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
951
	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
952 953 954 955 956 957 958 959 960 961
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
962 963 964

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
965 966 967
	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
			" sect=%u", used_sl, cfqq->slice_dispatch, charge,
			iops_mode(cfqd), cfqq->nr_sectors);
968 969
	cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
	cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
970 971
}

972 973 974 975 976 977 978 979
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

980 981 982 983 984 985
void
cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
{
	cfqg_of_blkg(blkg)->weight = weight;
}

986 987 988 989 990 991 992 993
static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;
994 995
	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
	unsigned int major, minor;
996 997

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
998 999 1000 1001 1002
	if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
		cfqg->blkg.dev = MKDEV(major, minor);
		goto done;
	}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

1014 1015 1016 1017 1018 1019 1020 1021
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

1022 1023 1024 1025 1026 1027 1028 1029 1030
	/*
	 * Add group onto cgroup list. It might happen that bdi->dev is
	 * not initiliazed yet. Initialize this new group without major
	 * and minor info and this info will be filled in once a new thread
	 * comes for IO. See code above.
	 */
	if (bdi->dev) {
		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1031
					MKDEV(major, minor));
1032 1033 1034 1035
	} else
		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
					0);

1036
	cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

1063 1064 1065 1066 1067 1068
static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
{
	atomic_inc(&cfqg->ref);
	return cfqg;
}

1069 1070 1071 1072 1073 1074 1075
static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
1118
		if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1119 1120
			cfq_destroy_cfqg(cfqd, cfqg);
	}