Commit 996b4a7d authored by Heiko Carstens's avatar Heiko Carstens Committed by Martin Schwidefsky

s390/mem_detect: remove artificial kdump memory types

Simplify the memory detection code a bit by removing the CHUNK_OLDMEM
and CHUNK_CRASHK memory types.
They are not needed. Everything that is needed is a mechanism to
insert holes into the detected memory.
Reviewed-by: default avatarMichael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: default avatarHeiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: default avatarMartin Schwidefsky <schwidefsky@de.ibm.com>
parent d3383632
......@@ -33,8 +33,6 @@
#define CHUNK_READ_WRITE 0
#define CHUNK_READ_ONLY 1
#define CHUNK_OLDMEM 4
#define CHUNK_CRASHK 5
struct mem_chunk {
unsigned long addr;
......@@ -47,8 +45,8 @@ extern int memory_end_set;
extern unsigned long memory_end;
void detect_memory_layout(struct mem_chunk chunk[], unsigned long maxsize);
void create_mem_hole(struct mem_chunk memory_chunk[], unsigned long addr,
unsigned long size, int type);
void create_mem_hole(struct mem_chunk mem_chunk[], unsigned long addr,
unsigned long size);
#define PRIMARY_SPACE_MODE 0
#define ACCESS_REGISTER_MODE 1
......
......@@ -89,7 +89,7 @@ static struct mem_chunk *get_memory_layout(void)
chunk_array = kzalloc_panic(MEMORY_CHUNKS * sizeof(struct mem_chunk));
detect_memory_layout(chunk_array, 0);
create_mem_hole(chunk_array, OLDMEM_BASE, OLDMEM_SIZE, CHUNK_CRASHK);
create_mem_hole(chunk_array, OLDMEM_BASE, OLDMEM_SIZE);
return chunk_array;
}
......@@ -344,7 +344,7 @@ static int loads_init(Elf64_Phdr *phdr, u64 loads_offset)
for (i = 0; i < MEMORY_CHUNKS; i++) {
mem_chunk = &chunk_array[i];
if (mem_chunk->size == 0)
break;
continue;
if (chunk_array[i].type != CHUNK_READ_WRITE &&
chunk_array[i].type != CHUNK_READ_ONLY)
continue;
......
......@@ -463,14 +463,10 @@ static void __init setup_resources(void)
for (i = 0; i < MEMORY_CHUNKS; i++) {
if (!memory_chunk[i].size)
continue;
if (memory_chunk[i].type == CHUNK_OLDMEM ||
memory_chunk[i].type == CHUNK_CRASHK)
continue;
res = alloc_bootmem_low(sizeof(*res));
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
switch (memory_chunk[i].type) {
case CHUNK_READ_WRITE:
case CHUNK_CRASHK:
res->name = "System RAM";
break;
case CHUNK_READ_ONLY:
......@@ -527,7 +523,7 @@ static void __init setup_memory_end(void)
unsigned long align;
chunk = &memory_chunk[i];
if (chunk->type == CHUNK_OLDMEM)
if (!chunk->size)
continue;
align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
start = (chunk->addr + align - 1) & ~(align - 1);
......@@ -579,7 +575,7 @@ static void __init setup_memory_end(void)
for (i = 0; i < MEMORY_CHUNKS; i++) {
struct mem_chunk *chunk = &memory_chunk[i];
if (chunk->type == CHUNK_OLDMEM)
if (!chunk->size)
continue;
if (chunk->addr >= memory_end) {
memset(chunk, 0, sizeof(*chunk));
......@@ -680,15 +676,6 @@ static int __init verify_crash_base(unsigned long crash_base,
return -EINVAL;
}
/*
* Reserve kdump memory by creating a memory hole in the mem_chunk array
*/
static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
int type)
{
create_mem_hole(memory_chunk, addr, size, type);
}
/*
* When kdump is enabled, we have to ensure that no memory from
* the area [0 - crashkernel memory size] and
......@@ -730,8 +717,8 @@ static void reserve_oldmem(void)
real_size = max(real_size, chunk->addr + chunk->size);
}
reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
reserve_kdump_bootmem(OLDMEM_SIZE, real_size - OLDMEM_SIZE, CHUNK_OLDMEM);
create_mem_hole(memory_chunk, OLDMEM_BASE, OLDMEM_SIZE);
create_mem_hole(memory_chunk, OLDMEM_SIZE, real_size - OLDMEM_SIZE);
if (OLDMEM_BASE + OLDMEM_SIZE == real_size)
saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
else
......@@ -774,7 +761,7 @@ static void __init reserve_crashkernel(void)
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
insert_resource(&iomem_resource, &crashk_res);
reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
create_mem_hole(memory_chunk, crash_base, crash_size);
pr_info("Reserving %lluMB of memory at %lluMB "
"for crashkernel (System RAM: %luMB)\n",
crash_size >> 20, crash_base >> 20, memory_end >> 20);
......@@ -846,11 +833,10 @@ static void __init setup_memory(void)
* Register RAM areas with the bootmem allocator.
*/
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
for (i = 0; i < MEMORY_CHUNKS; i++) {
unsigned long start_chunk, end_chunk, pfn;
if (memory_chunk[i].type != CHUNK_READ_WRITE &&
memory_chunk[i].type != CHUNK_CRASHK)
if (!memory_chunk[i].size)
continue;
start_chunk = PFN_DOWN(memory_chunk[i].addr);
end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
......
......@@ -95,82 +95,40 @@ out:
EXPORT_SYMBOL(detect_memory_layout);
/*
* Move memory chunks array from index "from" to index "to"
* Create memory hole with given address and size.
*/
static void mem_chunk_move(struct mem_chunk chunk[], int to, int from)
void create_mem_hole(struct mem_chunk mem_chunk[], unsigned long addr,
unsigned long size)
{
int cnt = MEMORY_CHUNKS - to;
memmove(&chunk[to], &chunk[from], cnt * sizeof(struct mem_chunk));
}
/*
* Initialize memory chunk
*/
static void mem_chunk_init(struct mem_chunk *chunk, unsigned long addr,
unsigned long size, int type)
{
chunk->type = type;
chunk->addr = addr;
chunk->size = size;
}
/*
* Create memory hole with given address, size, and type
*/
void create_mem_hole(struct mem_chunk chunk[], unsigned long addr,
unsigned long size, int type)
{
unsigned long lh_start, lh_end, lh_size, ch_start, ch_end, ch_size;
int i, ch_type;
int i;
for (i = 0; i < MEMORY_CHUNKS; i++) {
if (chunk[i].size == 0)
continue;
/* Define chunk properties */
ch_start = chunk[i].addr;
ch_size = chunk[i].size;
ch_end = ch_start + ch_size - 1;
ch_type = chunk[i].type;
/* Is memory chunk hit by memory hole? */
if (addr + size <= ch_start)
continue; /* No: memory hole in front of chunk */
if (addr > ch_end)
continue; /* No: memory hole after chunk */
struct mem_chunk *chunk = &mem_chunk[i];
/* Yes: Define local hole properties */
lh_start = max(addr, chunk[i].addr);
lh_end = min(addr + size - 1, ch_end);
lh_size = lh_end - lh_start + 1;
if (chunk->size == 0)
continue;
if (addr > chunk->addr + chunk->size)
continue;
if (addr + size <= chunk->addr)
continue;
/* Split */
if ((addr > chunk->addr) &&
(addr + size < chunk->addr + chunk->size)) {
struct mem_chunk *new = chunk + 1;
if (lh_start == ch_start && lh_end == ch_end) {
/* Hole covers complete memory chunk */
mem_chunk_init(&chunk[i], lh_start, lh_size, type);
} else if (lh_end == ch_end) {
/* Hole starts in memory chunk and convers chunk end */
mem_chunk_move(chunk, i + 1, i);
mem_chunk_init(&chunk[i], ch_start, ch_size - lh_size,
ch_type);
mem_chunk_init(&chunk[i + 1], lh_start, lh_size, type);
i += 1;
} else if (lh_start == ch_start) {
/* Hole ends in memory chunk */
mem_chunk_move(chunk, i + 1, i);
mem_chunk_init(&chunk[i], lh_start, lh_size, type);
mem_chunk_init(&chunk[i + 1], lh_end + 1,
ch_size - lh_size, ch_type);
break;
} else {
/* Hole splits memory chunk */
mem_chunk_move(chunk, i + 2, i);
mem_chunk_init(&chunk[i], ch_start,
lh_start - ch_start, ch_type);
mem_chunk_init(&chunk[i + 1], lh_start, lh_size, type);
mem_chunk_init(&chunk[i + 2], lh_end + 1,
ch_end - lh_end, ch_type);
break;
memmove(new, chunk, (MEMORY_CHUNKS-i-1) * sizeof(*new));
new->addr = addr + size;
new->size = chunk->addr + chunk->size - new->addr;
chunk->size = addr - chunk->addr;
continue;
} else if ((addr <= chunk->addr) &&
(addr + size >= chunk->addr + chunk->size)) {
memset(chunk, 0 , sizeof(*chunk));
} else if (addr + size < chunk->addr + chunk->size) {
chunk->size = chunk->addr + chunk->size - addr - size;
chunk->addr = addr + size;
} else if (addr > chunk->addr) {
chunk->size = addr - chunk->addr;
}
}
}
......@@ -375,9 +375,8 @@ void __init vmem_map_init(void)
ro_start = PFN_ALIGN((unsigned long)&_stext);
ro_end = (unsigned long)&_eshared & PAGE_MASK;
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
if (memory_chunk[i].type == CHUNK_CRASHK ||
memory_chunk[i].type == CHUNK_OLDMEM)
for (i = 0; i < MEMORY_CHUNKS; i++) {
if (!memory_chunk[i].size)
continue;
start = memory_chunk[i].addr;
end = memory_chunk[i].addr + memory_chunk[i].size;
......@@ -412,9 +411,6 @@ static int __init vmem_convert_memory_chunk(void)
for (i = 0; i < MEMORY_CHUNKS; i++) {
if (!memory_chunk[i].size)
continue;
if (memory_chunk[i].type == CHUNK_CRASHK ||
memory_chunk[i].type == CHUNK_OLDMEM)
continue;
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
if (!seg)
panic("Out of memory...\n");
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment