Kconfig 49 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

Linus Torvalds's avatar
Linus Torvalds committed
7
#
8
# async_tx api: hardware offloaded memory transfer/transform support
Linus Torvalds's avatar
Linus Torvalds committed
9
#
10
source "crypto/async_tx/Kconfig"
Linus Torvalds's avatar
Linus Torvalds committed
11

12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
Linus Torvalds's avatar
Linus Torvalds committed
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
46 47
	select CRYPTO_ALGAPI

48 49 50
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
51 52
	select CRYPTO_NULL2
	select CRYPTO_RNG2
53

54 55
config CRYPTO_BLKCIPHER
	tristate
56
	select CRYPTO_BLKCIPHER2
57
	select CRYPTO_ALGAPI
58 59 60 61 62

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
63
	select CRYPTO_WORKQUEUE
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97 98 99 100 101 102 103 104
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

105 106
config CRYPTO_RSA
	tristate "RSA algorithm"
107
	select CRYPTO_AKCIPHER
108
	select CRYPTO_MANAGER
109 110 111 112 113
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

114 115 116 117 118 119 120
config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

121 122
config CRYPTO_ECDH
	tristate "ECDH algorithm"
123
	select CRYPTO_KPP
124 125
	help
	  Generic implementation of the ECDH algorithm
126

Herbert Xu's avatar
Herbert Xu committed
127 128
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
129
	select CRYPTO_MANAGER2
Herbert Xu's avatar
Herbert Xu committed
130 131 132 133
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

134 135 136 137 138
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
139
	select CRYPTO_AKCIPHER2
140
	select CRYPTO_KPP2
141

142 143
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
144
	depends on NET
145 146
	select CRYPTO_MANAGER
	help
147
	  Userspace configuration for cryptographic instantiations such as
148 149
	  cbc(aes).

150 151
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
152 153
	default y
	depends on CRYPTO_MANAGER2
154
	help
155 156
	  Disable run-time self tests that normally take place at
	  algorithm registration.
157

158
config CRYPTO_GF128MUL
159
	tristate "GF(2^128) multiplication functions"
160
	help
161 162 163 164 165
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
166

Linus Torvalds's avatar
Linus Torvalds committed
167 168
config CRYPTO_NULL
	tristate "Null algorithms"
169
	select CRYPTO_NULL2
Linus Torvalds's avatar
Linus Torvalds committed
170 171 172
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

173
config CRYPTO_NULL2
174
	tristate
175 176 177 178
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

179
config CRYPTO_PCRYPT
180 181
	tristate "Parallel crypto engine"
	depends on SMP
182 183 184 185 186 187 188
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

189 190 191
config CRYPTO_WORKQUEUE
       tristate

192 193 194
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
195
	select CRYPTO_HASH
196
	select CRYPTO_MANAGER
197
	select CRYPTO_WORKQUEUE
Linus Torvalds's avatar
Linus Torvalds committed
198
	help
199 200 201
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
Linus Torvalds's avatar
Linus Torvalds committed
202

203 204 205 206 207 208 209 210 211 212 213 214
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
215
	  their crypto request asynchronously to be processed by this daemon.
216

217 218 219 220 221 222
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
223
	select CRYPTO_NULL
Linus Torvalds's avatar
Linus Torvalds committed
224
	help
225 226
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
Linus Torvalds's avatar
Linus Torvalds committed
227

228 229 230
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
231
	select CRYPTO_MANAGER
Linus Torvalds's avatar
Linus Torvalds committed
232
	help
233
	  Quick & dirty crypto test module.
Linus Torvalds's avatar
Linus Torvalds committed
234

235
config CRYPTO_ABLK_HELPER
236 237 238
	tristate
	select CRYPTO_CRYPTD

239 240 241 242 243
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

244 245 246
config CRYPTO_ENGINE
	tristate

247
comment "Authenticated Encryption with Associated Data"
248

249 250 251 252
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
Linus Torvalds's avatar
Linus Torvalds committed
253
	help
254
	  Support for Counter with CBC MAC. Required for IPsec.
Linus Torvalds's avatar
Linus Torvalds committed
255

256 257 258 259
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
260
	select CRYPTO_GHASH
261
	select CRYPTO_NULL
Linus Torvalds's avatar
Linus Torvalds committed
262
	help
263 264
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
Linus Torvalds's avatar
Linus Torvalds committed
265

266 267 268 269 270 271 272 273 274 275 276 277
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

278 279 280 281
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
282
	select CRYPTO_NULL
283
	select CRYPTO_RNG_DEFAULT
Linus Torvalds's avatar
Linus Torvalds committed
284
	help
285 286
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
Linus Torvalds's avatar
Linus Torvalds committed
287

288 289 290 291
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
292
	select CRYPTO_RNG_DEFAULT
293
	default m
294 295 296 297 298
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

299
comment "Block modes"
300

301 302
config CRYPTO_CBC
	tristate "CBC support"
303
	select CRYPTO_BLKCIPHER
304
	select CRYPTO_MANAGER
305
	help
306 307
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
308

309 310
config CRYPTO_CTR
	tristate "CTR support"
311
	select CRYPTO_BLKCIPHER
312
	select CRYPTO_SEQIV
313
	select CRYPTO_MANAGER
314
	help
315
	  CTR: Counter mode
316 317
	  This block cipher algorithm is required for IPSec.

318 319 320 321 322 323 324 325 326 327 328 329 330
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
331 332 333
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
334 335 336
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
337

338
config CRYPTO_LRW
339
	tristate "LRW support"
340 341 342 343 344 345 346 347 348 349
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

350 351 352 353 354 355 356 357
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

358
config CRYPTO_XTS
359
	tristate "XTS support"
360 361 362 363 364 365 366 367
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

368 369 370 371 372 373 374
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

375 376
comment "Hash modes"

377 378 379 380 381 382 383 384 385 386 387
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

388 389 390
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
391 392
	select CRYPTO_MANAGER
	help
393 394
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
395

396 397 398 399
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
400
	help
401 402 403 404
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
405

406 407 408 409 410 411 412 413 414 415 416
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

417
comment "Digest"
Mikko Herranen's avatar
Mikko Herranen committed
418

419 420
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
421
	select CRYPTO_HASH
422
	select CRC32
Joy Latten's avatar
Joy Latten committed
423
	help
424 425
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
426
	  See Castagnoli93.  Module will be crc32c.
Joy Latten's avatar
Joy Latten committed
427

428 429 430 431 432 433 434 435 436 437 438 439
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

440 441
config CRYPT_CRC32C_VPMSUM
	tristate "CRC32c CRC algorithm (powerpc64)"
442
	depends on PPC64 && ALTIVEC
443 444 445 446 447 448 449 450
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


451 452 453 454 455 456 457 458 459
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

500 501 502
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
503
	select CRYPTO_HASH
504 505 506
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

507 508
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
509
	select CRYPTO_HASH
510 511 512 513 514 515 516
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

517
config CRYPTO_POLY1305_X86_64
518
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
519 520 521 522 523 524 525 526 527 528
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

529 530
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
531
	select CRYPTO_HASH
532
	help
533
	  MD4 message digest algorithm (RFC1320).
534

535 536
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
537
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
538
	help
539
	  MD5 message digest algorithm (RFC1321).
Linus Torvalds's avatar
Linus Torvalds committed
540

541 542 543 544 545 546 547 548 549
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

550 551 552 553 554 555 556 557
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

558 559 560 561 562 563 564 565 566
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

567 568
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
569
	select CRYPTO_HASH
570
	help
571 572 573 574
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
575

576
config CRYPTO_RMD128
577
	tristate "RIPEMD-128 digest algorithm"
578
	select CRYPTO_HASH
579 580
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
581

582
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
583
	  be used as a secure replacement for RIPEMD. For other use cases,
584
	  RIPEMD-160 should be used.
585

586
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
587
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
588 589

config CRYPTO_RMD160
590
	tristate "RIPEMD-160 digest algorithm"
591
	select CRYPTO_HASH
592 593
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
594

595 596 597 598
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
599

600 601
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
602

603
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
604
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
605 606

config CRYPTO_RMD256
607
	tristate "RIPEMD-256 digest algorithm"
608
	select CRYPTO_HASH
609 610 611 612 613
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
614

615
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
616
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
617 618

config CRYPTO_RMD320
619
	tristate "RIPEMD-320 digest algorithm"
620
	select CRYPTO_HASH
621 622 623 624 625
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
626

627
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
628
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
629

630 631
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
632
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
633
	help
634
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
Linus Torvalds's avatar
Linus Torvalds committed
635

636
config CRYPTO_SHA1_SSSE3
637
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
638 639 640 641 642 643
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
644 645
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
646

647
config CRYPTO_SHA256_SSSE3
648
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
649 650 651 652 653 654 655
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
656 657
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
658 659 660 661 662 663 664 665 666 667

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
668 669
	  version 2 (AVX2) instructions, when available.

670 671 672 673 674 675 676 677 678
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

679 680 681 682 683 684 685 686 687
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

688 689 690 691 692 693 694
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

695 696 697 698 699 700 701
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
config CRYPTO_SHA256_MB
	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
config CRYPTO_SHA512_MB
        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
        depends on X86 && 64BIT
        select CRYPTO_SHA512
        select CRYPTO_HASH
        select CRYPTO_MCRYPTD
        help
          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
          using multi-buffer technique.  This algorithm computes on
          multiple data lanes concurrently with SIMD instructions for
          better throughput.  It should not be enabled by default but
          used when there is significant amount of work to keep the keep
          the data lanes filled to get performance benefit.  If the data
          lanes remain unfilled, a flush operation will be initiated to
          process the crypto jobs, adding a slight latency.

750 751
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
752
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
753
	help
754
	  SHA256 secure hash standard (DFIPS 180-2).
Linus Torvalds's avatar
Linus Torvalds committed
755

756 757
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
758

759 760
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
761

762 763 764 765 766 767 768 769 770
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

771 772 773 774 775 776 777 778 779
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

780 781 782 783 784 785 786 787 788
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

789 790
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
791
	select CRYPTO_HASH
792
	help
793
	  SHA512 secure hash standard (DFIPS 180-2).
794

795 796
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
797

798 799
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
800

801 802 803 804 805 806 807 808 809
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

810 811 812 813 814 815 816 817 818
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

819 820 821 822 823 824 825 826 827 828
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

829 830
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
831
	select CRYPTO_HASH
832
	help
833
	  Tiger hash algorithm 192, 160 and 128-bit hashes
834

835 836 837
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
838 839

	  See also:
840
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
841

842 843
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
844
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
845
	help
846
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
Linus Torvalds's avatar
Linus Torvalds committed
847

848 849
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
Linus Torvalds's avatar
Linus Torvalds committed
850 851

	  See also:
852
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
853

854 855
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
Richard Weinberger's avatar
Richard Weinberger committed
856
	depends on X86 && 64BIT
857 858 859 860 861
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

862
comment "Ciphers"
Linus Torvalds's avatar
Linus Torvalds committed
863 864 865

config CRYPTO_AES
	tristate "AES cipher algorithms"
866
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
867
	help
868
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
Linus Torvalds's avatar
Linus Torvalds committed
869 870 871
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
872 873 874 875 876 877 878
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
Linus Torvalds's avatar
Linus Torvalds committed
879

880
	  The AES specifies three key sizes: 128, 192 and 256 bits
Linus Torvalds's avatar
Linus Torvalds committed
881 882 883 884 885

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
886 887
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
888
	select CRYPTO_AES
Linus Torvalds's avatar
Linus Torvalds committed
889
	help
890
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
Linus Torvalds's avatar
Linus Torvalds committed
891 892 893
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
894 895 896 897 898 899 900
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
Linus Torvalds's avatar
Linus Torvalds committed
901

902
	  The AES specifies three key sizes: 128, 192 and 256 bits
903 904 905 906 907

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
908 909
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
910
	select CRYPTO_AES
911
	help
912
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
913 914 915
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
916 917 918
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
919 920 921 922 923 924 925 926 927 928 929
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
Richard Weinberger's avatar
Richard Weinberger committed
930
	depends on X86
931 932
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
933
	select CRYPTO_CRYPTD
934
	select CRYPTO_ABLK_HELPER
935
	select CRYPTO_ALGAPI
936
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
937 938
	select CRYPTO_LRW
	select CRYPTO_XTS
939 940 941 942 943 944 945 946 947 948
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
949 950 951 952
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
953

954
	  The AES specifies three key sizes: 128, 192 and 256 bits
Linus Torvalds's avatar
Linus Torvalds committed
955 956 957

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

958 959 960 961
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
962

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1015 1016
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1017 1018 1019

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1020
	select CRYPTO_BLKCIPHER
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1032
	select CRYPTO_BLOWFISH_COMMON
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1043 1044 1045 1046 1047 1048 1049 1050 1051
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1052 1053
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1054
	depends on X86 && 64BIT
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1082 1083
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1084
	depends on X86 && 64BIT
1085 1086
	depends on CRYPTO
	select CRYPTO_ALGAPI
1087
	select CRYPTO_GLUE_HELPER_X86
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1099 1100 1101 1102 1103 1104 1105 1106
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1107
	select CRYPTO_ABLK_HELPER
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1121 1122
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1123 1124 1125 1126 1127 1128
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1129
	select CRYPTO_ABLK_HELPER
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1162 1163 1164 1165 1166 1167
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

Linus Torvalds's avatar
Linus Torvalds committed
1168 1169
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1170
	select CRYPTO_ALGAPI
1171
	select CRYPTO_CAST_COMMON
Linus Torvalds's avatar
Linus Torvalds committed
1172 1173 1174 1175
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1176 1177 1178 1179 1180
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1181
	select CRYPTO_ABLK_HELPER
1182
	select CRYPTO_CAST_COMMON
1183 1184 1185 1186 1187 1188 1189 1190
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

Linus Torvalds's avatar
Linus Torvalds committed
1191 1192
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1193
	select CRYPTO_ALGAPI
1194
	select CRYPTO_CAST_COMMON
Linus Torvalds's avatar
Linus Torvalds committed
1195 1196 1197 1198
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1199 1200 1201 1202 1203
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1204
	select CRYPTO_ABLK_HELPER
1205
	select CRYPTO_GLUE_HELPER_X86
1206
	select CRYPTO_CAST_COMMON
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1217 1218
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1219
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1220
	help
1221
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1222

1223 1224
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1225
	depends on SPARC64
1226 1227 1228 1229 1230 1231
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1245 1246
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1247
	select CRYPTO_ALGAPI
1248
	select CRYPTO_BLKCIPHER
Linus Torvalds's avatar
Linus Torvalds committed
1249
	help
1250
	  FCrypt algorithm used by RxRPC.
Linus Torvalds's avatar
Linus Torvalds committed
1251 1252 1253

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1254
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1255 1256 1257 1258 1259 1260 1261 1262
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1263
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
Linus Torvalds's avatar
Linus Torvalds committed
1264

1265
config CRYPTO_SALSA20
1266
	tristate "Salsa20 stream cipher algorithm"
1267 1268 1269 1270 1271 1272
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1273 1274 1275 1276 1277

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1278
	tristate "Salsa20 stream cipher algorithm (i586)"
1279 1280 1281 1282 1283 1284 1285
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1286 1287 1288 1289 1290

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1291
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1292 1293 1294 1295 1296 1297 1298
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1299 1300 1301

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
Linus Torvalds's avatar
Linus Torvalds committed
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1316
config CRYPTO_CHACHA20_X86_64
1317
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1331 1332
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1333
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1334
	help
1335
	  SEED cipher algorithm (RFC4269).
Linus Torvalds's avatar
Linus Torvalds committed
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1347
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1348
	help
1349
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Linus Torvalds's avatar
Linus Torvalds committed
1350

1351 1352 1353 1354 1355 1356 1357
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1358 1359 1360 1361
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1362
	select CRYPTO_CRYPTD
1363
	select CRYPTO_ABLK_HELPER
1364
	select CRYPTO_GLUE_HELPER_X86
1365
	select CRYPTO_SERPENT
1366 1367
	select CRYPTO_LRW
	select CRYPTO_XTS
1368 1369 1370 1371 1372 1373
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1374
	  This module provides Serpent cipher algorithm that processes eight
1375 1376 1377 1378 1379
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1380 1381 1382 1383
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1384
	select CRYPTO_CRYPTD
1385
	select CRYPTO_ABLK_HELPER
1386
	select CRYPTO_GLUE_HELPER_X86
1387
	select CRYPTO_SERPENT
1388 1389
	select CRYPTO_LRW
	select CRYPTO_XTS
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1401 1402 1403 1404 1405 1406

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1407
	select CRYPTO_ABLK_HELPER
1408
	select CRYPTO_GLUE_HELPER_X86
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1423

1424 1425 1426 1427 1428
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1429
	select CRYPTO_ABLK_HELPER
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1447 1448
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1449
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1450
	help
1451
	  TEA cipher algorithm.
Linus Torvalds's avatar
Linus Torvalds committed
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1466
	select CRYPTO_ALGAPI
1467
	select CRYPTO_TWOFISH_COMMON